-
Notifications
You must be signed in to change notification settings - Fork 222
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
A error when compose H with LG #730
Comments
It's caused by out of memory
but why there is no high level code raise a out of memory error, but a low level of error above? |
Why did you close the issue? |
I met this problem again when the graph composed is large (num of arc is near 1 billion):
some int32_t of the new_offsets after GetOldAndNewOffsets is overflow:
It also happens at
I think the some int32_t should be extended to int64_t or size_t |
Can you show the full stack trace?
We don't really intend it to work for num-arcs that's not representable as
int32, but this may not be quite that large.
…On Wed, May 12, 2021 at 10:29 AM Jarvan-Wang ***@***.***> wrote:
Reopened #730 <#730>.
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#730 (comment)>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAZFLO7YYLVXOMK2GCGYQ5TTNHRZRANCNFSM43W4Z22A>
.
|
phone level model, when decoding:
[F] /search/odin/wangjiawen/k2/k2/csrc/tensor.cu:147:k2::Tensor::Tensor(k2::Dtype, const k2::Shape&, k2::RegionPtr, int32_t) Check failed: int64_t(impl_->byte_offset) + begin_elem * element_size >= 0 (-1803461652 vs. 0)
OK, this one should be fixable. That constructor of Tensor can be changed
so the byte_offset arg is int64_t not int32_t. The intention in general is
that byte-level indexes, and
offsets into multi-dimensional arrays, should be allowed to be greater than
int32_t, but individual indexes into arrays are limited to int32_t.
Do you have a setup where you can compile k2 and test a fix for this?
For the other errors, I wasn't quite able to figure out from what was
printed, what was going wrong. It might be necessary to run those in gdb
and get more information,
if you still have those setups available.
…
[ Stack-Trace: ]
/search/odin/wangjiawen/k2/build_1acec6f/lib/libk2_log.so(k2::internal::GetStackTrace()+0x34) [0x7fa478c10804]
/search/odin/wangjiawen/k2/build_1acec6f/lib/libk2context.so(k2::Tensor::Tensor(k2::Dtype, k2::Shape const&, std::shared_ptr<k2::Region>, int)+0x7e2) [0x7fa47937ccf2]
/search/odin/wangjiawen/k2/build_1acec6f/lib/libk2context.so(k2::Array2<int>::Col(int)+0x146) [0x7fa479330e76]
/search/odin/wangjiawen/k2/build_1acec6f/lib/libk2context.so(+0x2194c9) [0x7fa4793234c9]
/search/odin/wangjiawen/k2/build_1acec6f/lib/libk2context.so(k2::Index(k2::RaggedShape&, int, k2::Array1<int> const&, k2::Array1<int>*)+0x353) [0x7fa479325ff3]
/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so(+0xa16a9) [0x7fa47dc056a9]
/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so(+0x978f5) [0x7fa47dbfb8f5]
/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so(+0x28995) [0x7fa47db8c995]
Traceback (most recent call last):
File "/search/speech/wangjiawen/anaconda2/envs/python37/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/search/speech/wangjiawen/anaconda2/envs/python37/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/espnet2/bin/mmi_asr_inference.py", line 385, in <module>
main()
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/espnet2/bin/mmi_asr_inference.py", line 381, in main
inference(**kwargs)
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/espnet2/bin/mmi_asr_inference.py", line 211, in inference
aux_labels_disambig_id_start=first_word_disambig_id)
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/snowfall/decoding/graph.py", line 72, in compile_HLG
HLG = k2.compose(H, LG, inner_labels='phones')
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/k2/fsa_algo.py", line 369, in compose
out_fsa.aux_labels = index(b_fsa.aux_labels, b_arc_map)
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/k2/ops.py", line 309, in index
return index_ragged(src, indexes)
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/k2/ops.py", line 255, in index_ragged
ans, _ = ragged_index(src, indexes)
File "/search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/k2/ragged/ops.py", line 55, in index
need_value_indexes=need_value_indexes)
RuntimeError: Some bad things happed.
char level model, when training:
Traceback (most recent call last):
File "/search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/runpy.py", line 193, in _run_module_as_main
[Thread 0x7fc9be6fc700 (LWP 33114) exited]
"__main__", mod_spec)
File "/search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/bin/charlevel_mmi_asr_train.py", line 23, in <module>
main()
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/bin/charlevel_mmi_asr_train.py", line 19, in main
ASRTask.main(cmd=cmd)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/tasks/abs_task.py", line 1011, in main
cls.main_worker(args)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/tasks/abs_task.py", line 1333, in main_worker
keep_all_models=args.keep_all_models,
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/train/trainer.py", line 218, in run
options=trainer_options,
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/train/trainer.py", line 396, in train_one_epoch
loss, stats, weight = model(**batch)
File "/search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/asr/espnet_model_mmi.py", line 194, in forward
encoder_out, encoder_out_lens, text, text_lengths
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/asr/espnet_model_mmi.py", line 355, in _calc_mmi_loss
loss_mmi = self.mmi(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
File "/search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/espnet2/asr/charlevel_mmi.py", line 132, in forward
tot_score, tot_frames, all_frames = self.loss_fn(ys_hat if self.device is "auto" else ys_hat.to(torch.device(self.device)), texts, supervision_segments)
File "/search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/snowfall/objectives/mmi.py", line 73, in forward
num_den_reordered_graphs = k2.index(num_den_graphs, num_den_graphs_indexes)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/k2/ops.py", line 304, in index
return index_fsa(src, indexes)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/k2/ops.py", line 211, in index_fsa
need_value_indexes=True)
File "/search/odin/wangjiawen/espnet2_500h_charlevel_mmi/k2/ragged/ops.py", line 55, in index
need_value_indexes=need_value_indexes)
RuntimeError: [enforce fail at CPUAllocator.cpp:48] ((ptrdiff_t)nbytes) >= 0. alloc_cpu() seems to have been called with negative number: 18446744069413104760
frame #0: c10::ThrowEnforceNotMet(char const*, int, char const*, std::string const&, void const*) + 0x47 (0x7fca17f6f6a7 in /search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/site-packages/torch/lib/libc10.so)
frame #1: c10::alloc_cpu(unsigned long) + 0x487 (0x7fca17f40b97 in /search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/site-packages/torch/lib/libc10.so)
frame #2: <unknown function> + 0x247b6 (0x7fca17f427b6 in /search/odin/wangjiawen/anaconda2/envs/python37/lib/python3.7/site-packages/torch/lib/libc10.so)
frame #3: c10::Allocator::raw_allocate(unsigned long) + 0x32 (0x7fca100dd60a in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #4: k2::PytorchCpuContext::Allocate(unsigned long, void**) + 0x2b (0x7fca100def93 in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #5: k2::NewRegion(std::shared_ptr<k2::Context>, unsigned long) + 0xa1 (0x7fca0fe5cd09 in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #6: k2::Array1<int>::Init(std::shared_ptr<k2::Context>, int, k2::Dtype) + 0xea (0x7fca0fe33706 in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #7: k2::Array1<int>::Array1(std::shared_ptr<k2::Context>, int, k2::Dtype) + 0x50 (0x7fca0fe314ac in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #8: <unknown function> + 0x334b22 (0x7fca0ffc7b22 in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #9: k2::Index(k2::RaggedShape&, int, k2::Array1<int> const&, k2::Array1<int>*) + 0x195 (0x7fca0ffc872a in /search/odin/wangjiawen/k2/build_1acec6f_bugfix_debug/lib/libk2context.so)
frame #10: <unknown function> + 0x11a950 (0x7fca14c86950 in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #11: <unknown function> + 0xfc8f5 (0x7fca14c688f5 in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #12: <unknown function> + 0x1138aa (0x7fca14c7f8aa in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #13: <unknown function> + 0x110faa (0x7fca14c7cfaa in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #14: <unknown function> + 0x10afe3 (0x7fca14c76fe3 in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #15: <unknown function> + 0x10b093 (0x7fca14c77093 in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #16: <unknown function> + 0x522af (0x7fca14bbe2af in /search/odin/wangjiawen/espnet2_500h_phonelevel_mmi/lib/_k2.cpython-37m-x86_64-linux-gnu.so)
frame #17: _PyMethodDef_RawFastCallKeywords + 0x316 (0x55f53d8569b6 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #18: _PyCFunction_FastCallKeywords + 0x21 (0x55f53d856a31 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #19: _PyEval_EvalFrameDefault + 0x53e3 (0x55f53d8c3483 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #20: _PyEval_EvalCodeWithName + 0x2f9 (0x55f53d805829 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #21: _PyFunction_FastCallKeywords + 0x387 (0x55f53d856107 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #22: _PyEval_EvalFrameDefault + 0x14e5 (0x55f53d8bf585 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #23: _PyFunction_FastCallKeywords + 0xfb (0x55f53d855e7b in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #24: _PyEval_EvalFrameDefault + 0x416 (0x55f53d8be4b6 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #25: _PyFunction_FastCallKeywords + 0xfb (0x55f53d855e7b in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #26: _PyEval_EvalFrameDefault + 0x4a89 (0x55f53d8c2b29 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #27: _PyFunction_FastCallDict + 0x10b (0x55f53d80685b in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #28: _PyObject_Call_Prepend + 0x63 (0x55f53d8254d3 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #29: PyObject_Call + 0x6e (0x55f53d817ffe in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #30: _PyEval_EvalFrameDefault + 0x1e4a (0x55f53d8bfeea in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #31: _PyEval_EvalCodeWithName + 0x2f9 (0x55f53d805829 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #32: _PyFunction_FastCallDict + 0x1d5 (0x55f53d806925 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #33: _PyObject_Call_Prepend + 0x63 (0x55f53d8254d3 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #34: <unknown function> + 0x16be1a (0x55f53d85ce1a in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #35: _PyObject_FastCallKeywords + 0x48b (0x55f53d85dccb in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #36: _PyEval_EvalFrameDefault + 0x52fe (0x55f53d8c339e in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #37: _PyEval_EvalCodeWithName + 0xc30 (0x55f53d806160 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #38: _PyFunction_FastCallDict + 0x1d5 (0x55f53d806925 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #39: _PyObject_Call_Prepend + 0x63 (0x55f53d8254d3 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #40: PyObject_Call + 0x6e (0x55f53d817ffe in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #41: _PyEval_EvalFrameDefault + 0x1e4a (0x55f53d8bfeea in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #42: _PyEval_EvalCodeWithName + 0x2f9 (0x55f53d805829 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #43: _PyFunction_FastCallDict + 0x1d5 (0x55f53d806925 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #44: _PyObject_Call_Prepend + 0x63 (0x55f53d8254d3 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #45: <unknown function> + 0x16be1a (0x55f53d85ce1a in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #46: _PyObject_FastCallKeywords + 0x48b (0x55f53d85dccb in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #47: _PyEval_EvalFrameDefault + 0x52fe (0x55f53d8c339e in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #48: _PyFunction_FastCallKeywords + 0xfb (0x55f53d855e7b in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #49: _PyEval_EvalFrameDefault + 0x4a89 (0x55f53d8c2b29 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #50: _PyEval_EvalCodeWithName + 0x2f9 (0x55f53d805829 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #51: _PyFunction_FastCallDict + 0x400 (0x55f53d806b50 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #52: _PyObject_Call_Prepend + 0x63 (0x55f53d8254d3 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #53: PyObject_Call + 0x6e (0x55f53d817ffe in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #54: _PyEval_EvalFrameDefault + 0x1e4a (0x55f53d8bfeea in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #55: _PyEval_EvalCodeWithName + 0x2f9 (0x55f53d805829 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #56: _PyFunction_FastCallDict + 0x400 (0x55f53d806b50 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #57: _PyObject_Call_Prepend + 0x63 (0x55f53d8254d3 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #58: <unknown function> + 0x16be1a (0x55f53d85ce1a in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #59: PyObject_Call + 0x6e (0x55f53d817ffe in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #60: _PyEval_EvalFrameDefault + 0x1e4a (0x55f53d8bfeea in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #61: _PyEval_EvalCodeWithName + 0x2f9 (0x55f53d805829 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #62: _PyFunction_FastCallKeywords + 0x387 (0x55f53d856107 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
frame #63: _PyEval_EvalFrameDefault + 0x14e5 (0x55f53d8bf585 in /search/odin/wangjiawen/anaconda2/envs/python37/bin/python3)
my partern met similar problem in snowfall too
it reported that it need a billion GB cuda memory
[image: image]
<https://user-images.githubusercontent.com/46479583/117914584-3aacfd00-b316-11eb-9115-9547c71e7fe3.png>
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#730 (comment)>, or
unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAZFLO5LIQQ7Q6DQ6MK5GU3TNHZWVANCNFSM43W4Z22A>
.
|
Yes, the decoding issue seems easy to fix, I'll try it first. However, the setup is based on in-lab dataset that cannot be shared Let's show the training issue more clear:
c++ code:
|
@Jarvan-Wang |
my k2: 1acec6f |
It is reordered because of num_den_lats = k2.intersect_dense(num_den_reordered_graphs,
dense_fsa_vec,
output_beam=10.0,
a_to_b_map=a_to_b_map)
Also note that |
gotcha, another question,
then what the resulting old_offsets and new_offsets is? |
```
/*
Internal function used in Index(), which gets certain arrays used
internally.
@param [in] src Source shape to be indexed
@param [in] new2old Array of indexes into axis 0 of src; elements
equal to -1 will be interpreted as referring to
an empty list.
@param [out] old_offsets Will be set to new Array2 with dimension
(src.NumAxes(), new2old.Dim()), whose (i,j)'th
element contains the offset into axis i of `src`
where the slice of `src` with index0 (i.e. index
into 0'th-axis of `src`) equal to `new2old[j]`
begins.
@param [out] new_offsets Will be set to new Array2 with dimension
(src.NumAxes(), new2old.Dim()+1), whose (i,j)'th
element contains the offset into axis i of `ans`
where the data in `ans` corresponding to
index j (i.e. index j into axis 0 of `ans`) begins.
Note: `ans` is the result of Index(), with
ans.Dim0() == new2old.Dim().
*/
inline void GetOldAndNewOffsets(RaggedShape &src,
const Array1<int32_t> &new2old,
Array2<int32_t> *old_offsets,
Array2<int32_t> *new_offsets) {
```
…On Wed, May 12, 2021 at 3:16 PM Jarvan-Wang ***@***.***> wrote:
btw, I don't know why the new snowfall code cat the num and den together
and reorder it
It is reordered because of
https://github.com/k2-fsa/snowfall/blob/949226f35b29c629cb03cae36fa43da5993d27a3/snowfall/objectives/mmi.py#L79
num_den_lats = k2.intersect_dense(num_den_reordered_graphs,
dense_fsa_vec,
output_beam=10.0,
a_to_b_map=a_to_b_map)
a_to_b map must be montonically increasing. If you don't reorder it, then
a_to_b_map is not montonically increasing.
Also note that den_graph is replicated so that the number of den_graphs
equals to that of num_graphs.
gotcha, another question,
as a example below:
std::vector<int32_t> index_ = {0};
Array1<int32_t> index(GetCudaContext(), index_);
Ragged<int32_t> src('[ [ [ 1 2 ] [ 5 ] ] [ [ 7 8 9 ] ] ]');
GetOldAndNewOffsets(src.shape, index, &old_offsets, &new_offsets);
then what the resulting old_offsets and new_offsets is?
and what they mean?
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#730 (comment)>, or
unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAZFLOYIDV6M5SNQESHEME3TNITNXANCNFSM43W4Z22A>
.
|
After simply modify the construct func of Tensor.
py-bt:
bt:
It's cannot pass the ans.Check()
I find the reason:
the ans.layers_[0].row_splits is definitely wrong btw: |
After modify the arg byte_offsets of construction of k2::Tensor, and rerun, got segfault:
backstace is :
frame 6
frame 4
that is, when src.NumAxes() > 1, and indexes.dim_ > INT_MAX/4, will make the last row of new_offsets overflow. |
I guess you guys never met this issue is that maybe your experiments using open datasets of which the decoding grammar is small. I'll retry the decoding with a G grammar trained with data/train/text |
If you can, please figure out exactly where the overflow happened.
Byte offsets should always be size_t, and we should convert to size_t
before multiplying by the sizeof the type.
…On Thu, Jun 17, 2021 at 11:37 AM Jarvan-Wang ***@***.***> wrote:
Closed #730 <#730>.
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#730 (comment)>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAZFLO2XOVJDOAYJVD3RHPTTTFUWXANCNFSM43W4Z22A>
.
|
... you could separately make a PR to fix the byte_offsets arg of that
function to size_t.
…On Thu, Jun 17, 2021 at 12:15 PM Daniel Povey ***@***.***> wrote:
If you can, please figure out exactly where the overflow happened.
Byte offsets should always be size_t, and we should convert to size_t
before multiplying by the sizeof the type.
On Thu, Jun 17, 2021 at 11:37 AM Jarvan-Wang ***@***.***>
wrote:
> Closed #730 <#730>.
>
> —
> You are receiving this because you were mentioned.
> Reply to this email directly, view it on GitHub
> <#730 (comment)>, or
> unsubscribe
> <https://github.com/notifications/unsubscribe-auth/AAZFLO2XOVJDOAYJVD3RHPTTTFUWXANCNFSM43W4Z22A>
> .
>
|
my k2 is 1acec6f
Error is :
stack trace is roughly below:
Any idea?
The text was updated successfully, but these errors were encountered: