Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use Spatialdata IO to Read Visium #137

Merged
merged 2 commits into from
Jan 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,8 @@ dependencies = [
"tqdm>=4.64.0,<5",
"shapely>=1.8.0,<2.1",
"sksparse-minimal>=0.2",
"geopandas>=0.14.1,<1"
"geopandas>=0.14.1,<1",
"spatialdata-io>=0.0.9,<1"
]

[project.optional-dependencies]
Expand Down
60 changes: 9 additions & 51 deletions src/bayestme/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import pandas as pd
import scipy.io as io
import scipy.sparse.csc
import spatialdata_io
from scipy.sparse import csr_matrix

from bayestme import utils
Expand Down Expand Up @@ -243,61 +244,18 @@ def read_spaceranger(cls, data_path):
3) /spatial for position list
:return: SpatialExpressionDataset
"""
raw_count_path = os.path.join(data_path, "raw_feature_bc_matrix/matrix.mtx.gz")
filtered_count_path = os.path.join(
data_path, "filtered_feature_bc_matrix/matrix.mtx.gz"
)
features_path = os.path.join(data_path, "raw_feature_bc_matrix/features.tsv.gz")
barcodes_path = os.path.join(data_path, "raw_feature_bc_matrix/barcodes.tsv.gz")

tissue_positions_lists = glob.glob(
os.path.join(data_path, "spatial/tissue_positions*.*")
)

positions_path = [fn for fn in tissue_positions_lists if is_csv_tsv(fn)][0]

if is_tsv(positions_path):
positions_df = pd.read_csv(
positions_path, sep="\t", header=0, index_col=0, names=None
)
elif is_csv(positions_path):
positions_df = pd.read_csv(
positions_path, header=0, index_col=0, names=None
)
else:
raise RuntimeError("No positions list found in spaceranger directory")

raw_count = np.array(io.mmread(raw_count_path).todense())
filtered_count = np.array(io.mmread(filtered_count_path).todense())
features = np.array(pd.read_csv(features_path, header=None, sep="\t"))[
:, 1
].astype(str)
barcodes = pd.read_csv(barcodes_path, header=None, sep="\t")
n_spots = raw_count.shape[1]
n_genes = raw_count.shape[0]
logger.info("detected {} spots, {} genes".format(n_spots, n_genes))
positions = positions_df.loc[barcodes[0]][
[POSITIONS_X_COLUMN, POSITIONS_Y_COLUMN]
].to_numpy()
tissue_mask = positions_df[IN_TISSUE_ATTR].to_numpy().astype(bool)
n_spot_in = tissue_mask.sum()
logger.info("\t {} spots in tissue sample".format(n_spot_in))
all_counts = raw_count.sum()
tissue_counts = filtered_count.sum()
logger.info(
"\t {:.3f}% UMI counts bleeds out".format(
(1 - tissue_counts / all_counts) * 100
)
)
sd = spatialdata_io.visium(data_path, dataset_id="visium")
ad = sd.table

tissue_mask = ad.obs.in_tissue.astype(bool).values
return cls.from_arrays(
raw_counts=raw_count.T,
positions=positions,
raw_counts=ad.X,
positions=ad.obs[["array_row", "array_col"]].values,
tissue_mask=tissue_mask,
gene_names=features,
gene_names=ad.var_names.values,
layout=Layout.HEX,
edges=utils.get_edges(positions[tissue_mask], Layout.HEX),
barcodes=barcodes[0].to_numpy(),
edges=utils.get_edges(ad.obsm["spatial"][tissue_mask], Layout.HEX),
barcodes=ad.obs_names.values,
)

@classmethod
Expand Down
Loading