Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code Quality Fixes in StatePreparationChannel #4503

Merged
merged 9 commits into from
Sep 28, 2021
42 changes: 28 additions & 14 deletions cirq-core/cirq/ops/state_preparation_channel.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

"""Quantum gates to prepare a given target state."""

from typing import Any, Dict, Tuple, TYPE_CHECKING
from typing import Any, Dict, Tuple, Iterable, TYPE_CHECKING

import numpy as np

Expand All @@ -29,12 +29,12 @@
class StatePreparationChannel(raw_types.Gate):
"""A channel which prepares any state provided as the state vector on it's target qubits."""

def __init__(self, target_state: np.ndarray, name: str = "StatePreparation") -> None:
def __init__(self, target_state: np.ndarray, *, name: str = "StatePreparation") -> None:
"""Initializes a State Preparation channel.

Args:
target_state: The state vector that this gate should prepare.
name: the name of the gate
name: the name of the gate, used when printing it in the circuit diagram

Raises:
ValueError: if the array is not 1D, or does not have 2**n elements for some integer n.
Expand All @@ -51,8 +51,7 @@ def __init__(self, target_state: np.ndarray, name: str = "StatePreparation") ->
self._name = name
self._qid_shape = (2,) * n

@staticmethod
def _has_unitary_() -> bool:
def _has_unitary_(self) -> bool:
"""Checks and returns if the gate has a unitary representation.
It doesn't, since the resetting of the channels is a non-unitary operations,
it involves measurement."""
Expand All @@ -63,19 +62,23 @@ def _json_dict_(self) -> Dict[str, Any]:
return {
'cirq_type': self.__class__.__name__,
'target_state': self._state.tolist(),
'name': self._name,
}

@classmethod
def _from_json_dict_(cls, target_state, **kwargs):
def _from_json_dict_(
cls, target_state: np.ndarray, name: str, **kwargs
) -> 'StatePreparationChannel':
"""Recreates the channel object from it's serialized form

Args:
target_state: the state to prepare using this channel
name: the name of the gate for printing in circuit diagrams
kwargs: other keyword arguments, ignored
"""
return cls(target_state=np.array(target_state))
return cls(target_state=np.array(target_state), name=name)

def _num_qubits_(self):
def _num_qubits_(self) -> int:
return self._num_qubits

def _qid_shape_(self) -> Tuple[int, ...]:
Expand All @@ -92,12 +95,12 @@ def _circuit_diagram_info_(
)
return protocols.CircuitDiagramInfo(wire_symbols=symbols)

@staticmethod
def _has_kraus_():
def _has_kraus_(self) -> bool:
return True

def _kraus_(self):
def _kraus_(self) -> Iterable[np.ndarray]:
"""Returns the Kraus operator for this gate

The Kraus Operator is |Psi><i| for all |i>, where |Psi> is the target state.
This allows is to take any input state to the target state.
The operator satisfies the completeness relation Sum(E^ E) = I.
Expand All @@ -108,13 +111,24 @@ def _kraus_(self):
return operator

def __repr__(self) -> str:
return f'cirq.StatePreparationChannel({proper_repr(self._state)})'
return (
f'cirq.StatePreparationChannel('
f'target_state={proper_repr(self.state)}, name="{self._name}")'
)

def __str__(self) -> str:
return f'StatePreparationChannel({self.state})'

def _approx_eq_(self, other: Any, atol) -> bool:
if not isinstance(other, StatePreparationChannel):
return False
return np.allclose(self.state, other.state, rtol=0, atol=atol)

def __eq__(self, other) -> bool:
if not isinstance(other, StatePreparationChannel):
return False
return np.allclose(self.state, other.state)
return np.array_equal(self.state, other.state)

@property
def state(self):
def state(self) -> np.ndarray:
return self._state
26 changes: 22 additions & 4 deletions cirq-core/cirq/ops/state_preparation_channel_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,10 +107,8 @@ def test_gate_params():
assert gate.num_qubits() == 2
assert not gate._has_unitary_()
assert gate._has_kraus_()
assert (
repr(gate)
== 'cirq.StatePreparationChannel(np.array([(1+0j), 0j, 0j, 0j], dtype=np.complex128))'
)
assert str(gate) == 'StatePreparationChannel([1.+0.j 0.+0.j 0.+0.j 0.+0.j])'
cirq.testing.assert_equivalent_repr(gate)


def test_gate_error_handling():
Expand All @@ -126,3 +124,23 @@ def test_equality_of_gates():
gate_2 = cirq.StatePreparationChannel(state)
assert gate_1 == gate_2, "Equal state not leading to same gate"
assert not gate_1 == state, "Incompatible objects shouldn't be equal"


def test_approx_equality_of_gates():
state = np.array([1, 0, 0, 0], dtype=np.complex64)
gate_1 = cirq.StatePreparationChannel(state)
gate_2 = cirq.StatePreparationChannel(state)
assert cirq.approx_eq(gate_1, gate_2), "Equal state not leading to same gate"
assert not cirq.approx_eq(gate_1, state), "Different object types cannot be approx equal"
perturbed_state = np.array([1 - 1e-9, 1e-10, 0, 0], dtype=np.complex64)
gate_3 = cirq.StatePreparationChannel(perturbed_state)
assert cirq.approx_eq(gate_3, gate_1), "Almost equal states should lead to the same gate"
different_state = np.array([1 - 1e-5, 1e-4, 0, 0], dtype=np.complex64)
gate_4 = cirq.StatePreparationChannel(different_state)
assert not cirq.approx_eq(gate_4, gate_1), "Different states should not lead to the same gate"
assert cirq.approx_eq(
gate_4, gate_1, atol=1e-3
), "Gates with difference in states under the tolerance aren't equal"
assert not cirq.approx_eq(
gate_4, gate_1, atol=1e-6
), "Gates with difference in states over the tolerance are equal"
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,6 @@
"real": 0.0,
"imag": 0.0
}
]
],
"name": "StatePrepare"
}
Original file line number Diff line number Diff line change
@@ -1 +1 @@
cirq.StatePreparationChannel(np.array([(1+0j), 0j, 0j, 0j], dtype=np.complex128))
cirq.StatePreparationChannel(target_state=np.array([(1+0j), 0j, 0j, 0j], dtype=np.complex128), name="StatePrepare")