Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CV macro with stratification column doesn't work #213

Merged
merged 2 commits into from
May 23, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/Microsoft.ML/Runtime/EntryPoints/TrainTestSplit.cs
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,8 @@ public static string CreateStratificationColumn(IHost host, ref IDataView data,
new HashJoinTransform.Arguments
{
Column = new[] { new HashJoinTransform.Column { Name = stratCol, Source = stratificationColumn } },
Join = true
Join = true,
HashBits = 30
}, data);
}

Expand Down
68 changes: 68 additions & 0 deletions test/Microsoft.ML.Core.Tests/UnitTests/TestCSharpApi.cs
Original file line number Diff line number Diff line change
Expand Up @@ -330,5 +330,73 @@ public void TestCrossValidationMacro()
}
}
}

[Fact]
public void TestCrossValidationMacroWithStratification()
{
var dataPath = GetDataPath(@"breast-cancer.txt");
using (var env = new TlcEnvironment())
{
var subGraph = env.CreateExperiment();

var nop = new ML.Transforms.NoOperation();
var nopOutput = subGraph.Add(nop);

var learnerInput = new ML.Trainers.StochasticDualCoordinateAscentBinaryClassifier
{
TrainingData = nopOutput.OutputData,
NumThreads = 1
};
var learnerOutput = subGraph.Add(learnerInput);

var modelCombine = new ML.Transforms.ManyHeterogeneousModelCombiner
{
TransformModels = new ArrayVar<ITransformModel>(nopOutput.Model),
PredictorModel = learnerOutput.PredictorModel
};
var modelCombineOutput = subGraph.Add(modelCombine);

var experiment = env.CreateExperiment();
var importInput = new ML.Data.TextLoader(dataPath);
importInput.Arguments.Column = new ML.Data.TextLoaderColumn[]
{
new ML.Data.TextLoaderColumn { Name = "Label", Source = new[] { new ML.Data.TextLoaderRange(0) } },
new ML.Data.TextLoaderColumn { Name = "Strat", Source = new[] { new ML.Data.TextLoaderRange(1) } },
new ML.Data.TextLoaderColumn { Name = "Features", Source = new[] { new ML.Data.TextLoaderRange(2, 9) } }
};
var importOutput = experiment.Add(importInput);

var crossValidate = new ML.Models.CrossValidator
{
Data = importOutput.Data,
Nodes = subGraph,
TransformModel = null,
StratificationColumn = "Strat"
};
crossValidate.Inputs.Data = nop.Data;
crossValidate.Outputs.Model = modelCombineOutput.PredictorModel;
var crossValidateOutput = experiment.Add(crossValidate);

experiment.Compile();
experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false));
experiment.Run();
var data = experiment.GetOutput(crossValidateOutput.OverallMetrics[0]);

var schema = data.Schema;
var b = schema.TryGetColumnIndex("AUC", out int metricCol);
Assert.True(b);
using (var cursor = data.GetRowCursor(col => col == metricCol))
{
var getter = cursor.GetGetter<double>(metricCol);
b = cursor.MoveNext();
Assert.True(b);
double val = 0;
getter(ref val);
Assert.Equal(0.99, val, 2);
b = cursor.MoveNext();
Assert.False(b);
}
}
}
}
}