Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] Support npu op: (1) cos (2) cos_grad #34573

Merged
merged 4 commits into from
Aug 5, 2021
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions paddle/fluid/operators/activation_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -431,6 +431,63 @@ class ReciprocalGradNPUKernel : public framework::OpKernel<T> {
}
};

template <typename DeviceContext, typename T>
class CosNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");

auto place = ctx.GetPlace();
out->mutable_data<T>(place);

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

const auto& runner = NpuOpRunner("Cos", {*x}, {*out}, {});
runner.Run(stream);
}
};

template <typename DeviceContext, typename T>
class CosGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* x = ctx.Input<Tensor>("X");

auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

auto place = ctx.GetPlace();
dx->mutable_data<T>(place);

Tensor sin_out(x->type()); // Temporary Tensor
sin_out.Resize(x->dims());
sin_out.mutable_data<T>(place);

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner = NpuOpRunner("Sin", {*x}, {sin_out}, {});
runner.Run(stream);

const auto& runner_dx = NpuOpRunner("Mul", {*dout, sin_out}, {*dx}, {});
runner_dx.Run(stream);

Tensor tmp(x->type()); // Temporary Tensor
tmp.Resize(framework::make_ddim({1, 1}));
tmp.mutable_data<T>({1}, place);
float factor = -1.;
FillNpuTensorWithConstant<T>(&tmp, static_cast<T>(factor));

const auto& runner_dx_ = NpuOpRunner("Xdivy", {*dx, tmp}, {*dx}, {});
runner_dx_.Run(stream);

// dx = -dout * Sine(x);
}
};

} // namespace operators
} // namespace paddle

Expand Down Expand Up @@ -531,3 +588,13 @@ REGISTER_OP_NPU_KERNEL(
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
cos, ops::CosNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::CosNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
cos_grad, ops::CosGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::CosGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
146 changes: 146 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_cos_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


class TestCos(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "cos"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.cos(x)

self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {}
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float32

def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-7)

def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X'], 'Out')


class TestCosFp16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "cos"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
out = np.cos(x)

self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {}
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True

def init_dtype(self):
self.dtype = np.float16

def test_check_output(self):
self.check_output_with_place(self.place)


class TestCosNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')

c = paddle.multiply(a, b)
d = paddle.cos(c)

fc_1 = fluid.layers.fc(input=d, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

print("Start run on {}".format(place))
for epoch in range(100):

pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))

return pred_res, loss_res

def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)

self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))


if __name__ == '__main__':
unittest.main()