Skip to content

Commit

Permalink
Support npu kernel for expand_as_v2 op (#34620)
Browse files Browse the repository at this point in the history
* Support npu kernel for expand_as_v2 op

* mofify the registry data type name

* fix test unit

* fix npu compile error, test=develop

* fix compute function

Co-authored-by: qili93 <qili93@qq.com>
  • Loading branch information
rainyfly and qili93 authored Aug 10, 2021
1 parent 3f32b73 commit 202c240
Show file tree
Hide file tree
Showing 2 changed files with 242 additions and 0 deletions.
96 changes: 96 additions & 0 deletions paddle/fluid/operators/expand_as_v2_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_as_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ExpandAsV2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto rank = context.Input<Tensor>("X")->dims().size();
auto target_shape = context.Attr<std::vector<int>>("target_shape");
auto target_rank = target_shape.size();
PADDLE_ENFORCE_GE(target_rank, rank,
platform::errors::InvalidArgument(
"The rank (%d) of the input 'target_tensor' for "
"expand_as_v2 op must be greater than or equal to "
"the rank (%d) of the input 'x'.",
target_rank, rank));
PADDLE_ENFORCE_GE(rank, 1, platform::errors::InvalidArgument(
"The rank (%d) of the input 'x' for "
"expand_as_v2 op must be positive.",
rank));
PADDLE_ENFORCE_LE(target_rank, MAX_RANK_SUPPORTED,
platform::errors::InvalidArgument(
"The rank (%d) of the input 'target_tensor' for "
"expand_as_v2 op must be less than or equal to %d.",
target_rank, MAX_RANK_SUPPORTED));
ExpandAs(context);
}

protected:
void ExpandAs(const framework::ExecutionContext& context) const {
auto* in0 = context.Input<framework::Tensor>("X");
auto in_dims = in0->dims();
auto target_shape = context.Attr<std::vector<int>>("target_shape");
auto vec_in_dims = framework::vectorize<int>(in_dims);
auto diff = target_shape.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);

for (size_t i = 0; i < vec_in_dims.size(); ++i) {
PADDLE_ENFORCE_NE(target_shape[i], 0,
platform::errors::InvalidArgument(
"The value of target shape cannot be zero."));
if (vec_in_dims[i] != 1) {
PADDLE_ENFORCE_EQ(
vec_in_dims[i], target_shape[i],
platform::errors::InvalidArgument(
"The value (%d) of the non-singleton dimension does not match"
" the corresponding value (%d) in "
"target tensor for expand_as_v2 op.",
vec_in_dims[i], target_shape[i]));
}
}
auto* out0 = context.Output<framework::Tensor>("Out");

framework::DDim out_dims = framework::make_ddim(target_shape);

out0->Resize(out_dims);
out0->mutable_data<T>(context.GetPlace());

const auto& runner =
NpuOpRunner("ExpandD", {*in0}, {*out0}, {{"shape", target_shape}});

auto stream =
context.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
expand_as_v2,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, int8_t>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, uint8_t>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
146 changes: 146 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_expand_as_v2_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
np.random.seed(10)


class TestExpandAsOpRank1(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(100).astype("float32")
target_tensor = np.random.rand(2, 100).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [2, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}

def set_npu(self):
self.__class__.use_npu = True

def test_check_output(self):
self.check_output_with_place(self.place)

def test_check_grad(self):
pass


class TestExpandAsOpRank2(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(10, 12).astype("float32")
target_tensor = np.random.rand(10, 12).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [1, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}

def set_npu(self):
self.__class__.use_npu = True

def test_check_output(self):
self.check_output_with_place(self.place)

def test_check_grad(self):
pass


class TestExpandAsOpRank3(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(2, 3, 20).astype("float32")
target_tensor = np.random.rand(2, 3, 20).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [1, 1, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}

def set_npu(self):
self.__class__.use_npu = True

def test_check_output(self):
self.check_output_with_place(self.place)

def test_check_grad(self):
pass


class TestExpandAsOpRank4(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(1, 1, 7, 16).astype("float32")
target_tensor = np.random.rand(4, 6, 7, 16).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [4, 6, 1, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}

def set_npu(self):
self.__class__.use_npu = True

def test_check_output(self):
self.check_output_with_place(self.place)

def test_check_grad(self):
pass


# Test python API
class TestExpandAsV2API(unittest.TestCase):
def test_api(self):
input1 = np.random.random([12, 14]).astype("float32")
input2 = np.random.random([2, 12, 14]).astype("float32")
x = fluid.layers.data(
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")

y = fluid.layers.data(
name='target_tensor',
shape=[2, 12, 14],
append_batch_size=False,
dtype="float32")

out_1 = paddle.expand_as(x, y=y)

exe = fluid.Executor(place=fluid.NPUPlace(0))
res_1 = exe.run(fluid.default_main_program(),
feed={"x": input1,
"target_tensor": input2},
fetch_list=[out_1])
assert np.array_equal(res_1[0], np.tile(input1, (2, 1, 1)))


if __name__ == '__main__':
unittest.main()

0 comments on commit 202c240

Please sign in to comment.