-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support npu kernel for expand_as_v2 op (#34620)
* Support npu kernel for expand_as_v2 op * mofify the registry data type name * fix test unit * fix npu compile error, test=develop * fix compute function Co-authored-by: qili93 <qili93@qq.com>
- Loading branch information
Showing
2 changed files
with
242 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/expand_as_v2_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class ExpandAsV2NPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto rank = context.Input<Tensor>("X")->dims().size(); | ||
auto target_shape = context.Attr<std::vector<int>>("target_shape"); | ||
auto target_rank = target_shape.size(); | ||
PADDLE_ENFORCE_GE(target_rank, rank, | ||
platform::errors::InvalidArgument( | ||
"The rank (%d) of the input 'target_tensor' for " | ||
"expand_as_v2 op must be greater than or equal to " | ||
"the rank (%d) of the input 'x'.", | ||
target_rank, rank)); | ||
PADDLE_ENFORCE_GE(rank, 1, platform::errors::InvalidArgument( | ||
"The rank (%d) of the input 'x' for " | ||
"expand_as_v2 op must be positive.", | ||
rank)); | ||
PADDLE_ENFORCE_LE(target_rank, MAX_RANK_SUPPORTED, | ||
platform::errors::InvalidArgument( | ||
"The rank (%d) of the input 'target_tensor' for " | ||
"expand_as_v2 op must be less than or equal to %d.", | ||
target_rank, MAX_RANK_SUPPORTED)); | ||
ExpandAs(context); | ||
} | ||
|
||
protected: | ||
void ExpandAs(const framework::ExecutionContext& context) const { | ||
auto* in0 = context.Input<framework::Tensor>("X"); | ||
auto in_dims = in0->dims(); | ||
auto target_shape = context.Attr<std::vector<int>>("target_shape"); | ||
auto vec_in_dims = framework::vectorize<int>(in_dims); | ||
auto diff = target_shape.size() - vec_in_dims.size(); | ||
vec_in_dims.insert(vec_in_dims.begin(), diff, 1); | ||
|
||
for (size_t i = 0; i < vec_in_dims.size(); ++i) { | ||
PADDLE_ENFORCE_NE(target_shape[i], 0, | ||
platform::errors::InvalidArgument( | ||
"The value of target shape cannot be zero.")); | ||
if (vec_in_dims[i] != 1) { | ||
PADDLE_ENFORCE_EQ( | ||
vec_in_dims[i], target_shape[i], | ||
platform::errors::InvalidArgument( | ||
"The value (%d) of the non-singleton dimension does not match" | ||
" the corresponding value (%d) in " | ||
"target tensor for expand_as_v2 op.", | ||
vec_in_dims[i], target_shape[i])); | ||
} | ||
} | ||
auto* out0 = context.Output<framework::Tensor>("Out"); | ||
|
||
framework::DDim out_dims = framework::make_ddim(target_shape); | ||
|
||
out0->Resize(out_dims); | ||
out0->mutable_data<T>(context.GetPlace()); | ||
|
||
const auto& runner = | ||
NpuOpRunner("ExpandD", {*in0}, {*out0}, {{"shape", target_shape}}); | ||
|
||
auto stream = | ||
context.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
runner.Run(stream); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_NPU_KERNEL( | ||
expand_as_v2, | ||
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, int8_t>, | ||
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, uint8_t>, | ||
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
146 changes: 146 additions & 0 deletions
146
python/paddle/fluid/tests/unittests/npu/test_expand_as_v2_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import unittest | ||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
|
||
paddle.enable_static() | ||
np.random.seed(10) | ||
|
||
|
||
class TestExpandAsOpRank1(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "expand_as_v2" | ||
x = np.random.rand(100).astype("float32") | ||
target_tensor = np.random.rand(2, 100).astype("float32") | ||
self.inputs = {'X': x} | ||
self.attrs = {'target_shape': target_tensor.shape} | ||
bcast_dims = [2, 1] | ||
output = np.tile(self.inputs['X'], bcast_dims) | ||
self.outputs = {'Out': output} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
def test_check_grad(self): | ||
pass | ||
|
||
|
||
class TestExpandAsOpRank2(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "expand_as_v2" | ||
x = np.random.rand(10, 12).astype("float32") | ||
target_tensor = np.random.rand(10, 12).astype("float32") | ||
self.inputs = {'X': x} | ||
self.attrs = {'target_shape': target_tensor.shape} | ||
bcast_dims = [1, 1] | ||
output = np.tile(self.inputs['X'], bcast_dims) | ||
self.outputs = {'Out': output} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
def test_check_grad(self): | ||
pass | ||
|
||
|
||
class TestExpandAsOpRank3(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "expand_as_v2" | ||
x = np.random.rand(2, 3, 20).astype("float32") | ||
target_tensor = np.random.rand(2, 3, 20).astype("float32") | ||
self.inputs = {'X': x} | ||
self.attrs = {'target_shape': target_tensor.shape} | ||
bcast_dims = [1, 1, 1] | ||
output = np.tile(self.inputs['X'], bcast_dims) | ||
self.outputs = {'Out': output} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
def test_check_grad(self): | ||
pass | ||
|
||
|
||
class TestExpandAsOpRank4(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "expand_as_v2" | ||
x = np.random.rand(1, 1, 7, 16).astype("float32") | ||
target_tensor = np.random.rand(4, 6, 7, 16).astype("float32") | ||
self.inputs = {'X': x} | ||
self.attrs = {'target_shape': target_tensor.shape} | ||
bcast_dims = [4, 6, 1, 1] | ||
output = np.tile(self.inputs['X'], bcast_dims) | ||
self.outputs = {'Out': output} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
def test_check_grad(self): | ||
pass | ||
|
||
|
||
# Test python API | ||
class TestExpandAsV2API(unittest.TestCase): | ||
def test_api(self): | ||
input1 = np.random.random([12, 14]).astype("float32") | ||
input2 = np.random.random([2, 12, 14]).astype("float32") | ||
x = fluid.layers.data( | ||
name='x', shape=[12, 14], append_batch_size=False, dtype="float32") | ||
|
||
y = fluid.layers.data( | ||
name='target_tensor', | ||
shape=[2, 12, 14], | ||
append_batch_size=False, | ||
dtype="float32") | ||
|
||
out_1 = paddle.expand_as(x, y=y) | ||
|
||
exe = fluid.Executor(place=fluid.NPUPlace(0)) | ||
res_1 = exe.run(fluid.default_main_program(), | ||
feed={"x": input1, | ||
"target_tensor": input2}, | ||
fetch_list=[out_1]) | ||
assert np.array_equal(res_1[0], np.tile(input1, (2, 1, 1))) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |