by Rui Xu, Zongyan Han, Le Hui, Jianjun Qian, and Jin Xie.
-
requires:
CUDA10 + Pytorch 1.2.0 + Python3
-
Train:
CUDA_VISIBLE_DEVICES=0 python main.py --network DD_GAN --model_dir DD_GAN --batch_size 256 --max_epoch 300 --snapshot 50 --phase train
-
Test:
CUDA_VISIBLE_DEVICES=0 python main.py --network DD_GAN --model_dir DD_GAN --batch_size 20 --pretrain_model best_full_P.pth --phase test
If you find the code useful, please consider citing:
@article{xu2022domain,
title={Domain Disentangled Generative Adversarial Network for Zero-Shot Sketch-Based 3D Shape Retrieval},
author={Xu, Rui and Han, Zongyan and Hui, Le and Qian, Jianjun and Xie, Jin},
journal={arXiv preprint arXiv:2202.11948},
year={2022}
}
Our preprocessing dataset
Our word embedding model is from GloVe
Our evaluation code is from Deep Correlated Holistic Metric Learning for Sketch-based 3D Shape Retrieval