Skip to content

Latest commit

 

History

History
45 lines (29 loc) · 1.26 KB

README.md

File metadata and controls

45 lines (29 loc) · 1.26 KB

Domain Disentangled Generative Adversarial Network for Zero-Shot Sketch-Based 3D Shape Retrieval

by Rui Xu, Zongyan Han, Le Hui, Jianjun Qian, and Jin Xie.

Usage

  1. requires:

    CUDA10 + Pytorch 1.2.0 + Python3
    
  2. Train:

    CUDA_VISIBLE_DEVICES=0 python main.py --network DD_GAN --model_dir DD_GAN  --batch_size 256 --max_epoch 300  --snapshot 50 --phase train
    
  3. Test:

    CUDA_VISIBLE_DEVICES=0 python main.py --network DD_GAN --model_dir DD_GAN  --batch_size 20  --pretrain_model best_full_P.pth --phase test
    

Citation

If you find the code useful, please consider citing:

@article{xu2022domain,
  title={Domain Disentangled Generative Adversarial Network for Zero-Shot Sketch-Based 3D Shape Retrieval},
  author={Xu, Rui and Han, Zongyan and Hui, Le and Qian, Jianjun and Xie, Jin},
  journal={arXiv preprint arXiv:2202.11948},
  year={2022}
}

Acknowledgement

Our preprocessing dataset

Our word embedding model is from GloVe

Our evaluation code is from Deep Correlated Holistic Metric Learning for Sketch-based 3D Shape Retrieval