Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: improve sync committee updates #7456

Merged
merged 7 commits into from
Feb 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
260 changes: 257 additions & 3 deletions packages/state-transition/src/util/seed.ts
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ export function computeProposers(
fork,
effectiveBalanceIncrements,
shuffling.activeIndices,
// TODO: if we use hashTree, we can precompute the roots for the next n loops
digest(Buffer.concat([epochSeed, intToBytes(slot, 8)]))
)
);
Expand All @@ -44,10 +45,11 @@ export function computeProposers(

/**
* Return from ``indices`` a random index sampled by effective balance.
* This is just to make sure lodestar follows the spec, this is not for production.
*
* SLOW CODE - 🐢
*/
export function computeProposerIndex(
export function naiveComputeProposerIndex(
fork: ForkSeq,
effectiveBalanceIncrements: EffectiveBalanceIncrements,
indices: ArrayLike<ValidatorIndex>,
Expand Down Expand Up @@ -95,7 +97,93 @@ export function computeProposerIndex(
}

/**
* TODO: NAIVE
* Optimized version of `naiveComputeProposerIndex`.
* It shows > 3x speedup according to the perf test.
*/
export function computeProposerIndex(
fork: ForkSeq,
effectiveBalanceIncrements: EffectiveBalanceIncrements,
indices: ArrayLike<ValidatorIndex>,
seed: Uint8Array
): ValidatorIndex {
if (indices.length === 0) {
throw Error("Validator indices must not be empty");
}

if (fork >= ForkSeq.electra) {
// electra, see inline comments for the optimization
const MAX_RANDOM_VALUE = 2 ** 16 - 1;
const MAX_EFFECTIVE_BALANCE_INCREMENT = MAX_EFFECTIVE_BALANCE_ELECTRA / EFFECTIVE_BALANCE_INCREMENT;

const shuffledIndexFn = getComputeShuffledIndexFn(indices.length, seed);
// this simple cache makes sure we don't have to recompute the shuffled index for the next round of activeValidatorCount
const shuffledResult = new Map<number, number>();

let i = 0;
const cachedHashInput = Buffer.allocUnsafe(32 + 8);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

added: reuse this buffer as the input for digest below

cachedHashInput.set(seed, 0);
cachedHashInput.writeUint32LE(0, 32 + 4);
let cachedHash: Uint8Array | null = null;
while (true) {
// an optimized version of the below naive code
// const candidateIndex = indices[computeShuffledIndex(i % indices.length, indices.length, seed)];
const index = i % indices.length;
let shuffledIndex = shuffledResult.get(index);
if (shuffledIndex == null) {
shuffledIndex = shuffledIndexFn(index);
shuffledResult.set(index, shuffledIndex);
}
const candidateIndex = indices[shuffledIndex];

// compute a new hash every 16 iterations
if (i % 16 === 0) {
cachedHashInput.writeUint32LE(Math.floor(i / 16), 32);
cachedHash = digest(cachedHashInput);
}

if (cachedHash == null) {
// there is always a cachedHash, handle this to make the compiler happy
throw new Error("cachedHash should not be null");
}

const randomBytes = cachedHash;
const offset = (i % 16) * 2;
// this is equivalent to bytesToInt(randomBytes.subarray(offset, offset + 2));
// but it does not get through BigInt
const lowByte = randomBytes[offset];
const highByte = randomBytes[offset + 1];
const randomValue = lowByte + highByte * 256;

const effectiveBalanceIncrement = effectiveBalanceIncrements[candidateIndex];
if (effectiveBalanceIncrement * MAX_RANDOM_VALUE >= MAX_EFFECTIVE_BALANCE_INCREMENT * randomValue) {
return candidateIndex;
}

i += 1;
}
} else {
// preelectra, this function is the same to the naive version
const MAX_RANDOM_BYTE = 2 ** 8 - 1;
const MAX_EFFECTIVE_BALANCE_INCREMENT = MAX_EFFECTIVE_BALANCE / EFFECTIVE_BALANCE_INCREMENT;

let i = 0;
while (true) {
const candidateIndex = indices[computeShuffledIndex(i % indices.length, indices.length, seed)];
const randomByte = digest(Buffer.concat([seed, intToBytes(Math.floor(i / 32), 8, "le")]))[i % 32];

const effectiveBalanceIncrement = effectiveBalanceIncrements[candidateIndex];
if (effectiveBalanceIncrement * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE_INCREMENT * randomByte) {
return candidateIndex;
}

i += 1;
}
}
}

/**
* Naive version, this is not supposed to be used in production.
* See `computeProposerIndex` for the optimized version.
*
* Return the sync committee indices for a given state and epoch.
* Aligns `epoch` to `baseEpoch` so the result is the same with any `epoch` within a sync period.
Expand All @@ -104,7 +192,7 @@ export function computeProposerIndex(
*
* SLOW CODE - 🐢
*/
export function getNextSyncCommitteeIndices(
export function naiveGetNextSyncCommitteeIndices(
fork: ForkSeq,
state: BeaconStateAllForks,
activeValidatorIndices: ArrayLike<ValidatorIndex>,
Expand Down Expand Up @@ -161,13 +249,110 @@ export function getNextSyncCommitteeIndices(
return syncCommitteeIndices;
}

/**
* Optmized version of `naiveGetNextSyncCommitteeIndices`.
*
* In the worse case scenario, this could be >1000x speedup according to the perf test.
*/
export function getNextSyncCommitteeIndices(
fork: ForkSeq,
state: BeaconStateAllForks,
activeValidatorIndices: ArrayLike<ValidatorIndex>,
effectiveBalanceIncrements: EffectiveBalanceIncrements
): ValidatorIndex[] {
const syncCommitteeIndices = [];

if (fork >= ForkSeq.electra) {
// electra, see inline comments for the optimization
const MAX_RANDOM_VALUE = 2 ** 16 - 1;
const MAX_EFFECTIVE_BALANCE_INCREMENT = MAX_EFFECTIVE_BALANCE_ELECTRA / EFFECTIVE_BALANCE_INCREMENT;

const epoch = computeEpochAtSlot(state.slot) + 1;
const activeValidatorCount = activeValidatorIndices.length;
const seed = getSeed(state, epoch, DOMAIN_SYNC_COMMITTEE);
const shuffledIndexFn = getComputeShuffledIndexFn(activeValidatorCount, seed);

let i = 0;
let cachedHash: Uint8Array | null = null;
const cachedHashInput = Buffer.allocUnsafe(32 + 8);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

added: reuse this buffer as the input for digest below

cachedHashInput.set(seed, 0);
cachedHashInput.writeUInt32LE(0, 32 + 4);
// this simple cache makes sure we don't have to recompute the shuffled index for the next round of activeValidatorCount
const shuffledResult = new Map<number, number>();
while (syncCommitteeIndices.length < SYNC_COMMITTEE_SIZE) {
// optimized version of the below naive code
// const shuffledIndex = shuffledIndexFn(i % activeValidatorCount);
const index = i % activeValidatorCount;
let shuffledIndex = shuffledResult.get(index);
if (shuffledIndex == null) {
shuffledIndex = shuffledIndexFn(index);
shuffledResult.set(index, shuffledIndex);
}
const candidateIndex = activeValidatorIndices[shuffledIndex];

// compute a new hash every 16 iterations
if (i % 16 === 0) {
cachedHashInput.writeUint32LE(Math.floor(i / 16), 32);
cachedHash = digest(cachedHashInput);
}

if (cachedHash == null) {
// there is always a cachedHash, handle this to make the compiler happy
throw new Error("cachedHash should not be null");
}

const randomBytes = cachedHash;
const offset = (i % 16) * 2;

// this is equivalent to bytesToInt(randomBytes.subarray(offset, offset + 2));
// but it does not get through BigInt
const lowByte = randomBytes[offset];
const highByte = randomBytes[offset + 1];
const randomValue = lowByte + highByte * 256;

const effectiveBalanceIncrement = effectiveBalanceIncrements[candidateIndex];
if (effectiveBalanceIncrement * MAX_RANDOM_VALUE >= MAX_EFFECTIVE_BALANCE_INCREMENT * randomValue) {
syncCommitteeIndices.push(candidateIndex);
}

i += 1;
}
} else {
// pre-electra, keep the same naive version
const MAX_RANDOM_BYTE = 2 ** 8 - 1;
const MAX_EFFECTIVE_BALANCE_INCREMENT = MAX_EFFECTIVE_BALANCE / EFFECTIVE_BALANCE_INCREMENT;

const epoch = computeEpochAtSlot(state.slot) + 1;
const activeValidatorCount = activeValidatorIndices.length;
const seed = getSeed(state, epoch, DOMAIN_SYNC_COMMITTEE);

let i = 0;
while (syncCommitteeIndices.length < SYNC_COMMITTEE_SIZE) {
const shuffledIndex = computeShuffledIndex(i % activeValidatorCount, activeValidatorCount, seed);
const candidateIndex = activeValidatorIndices[shuffledIndex];
const randomByte = digest(Buffer.concat([seed, intToBytes(Math.floor(i / 32), 8, "le")]))[i % 32];

const effectiveBalanceIncrement = effectiveBalanceIncrements[candidateIndex];
if (effectiveBalanceIncrement * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE_INCREMENT * randomByte) {
syncCommitteeIndices.push(candidateIndex);
}

i += 1;
}
}

return syncCommitteeIndices;
}

/**
* Return the shuffled validator index corresponding to ``seed`` (and ``index_count``).
*
* Swap or not
* https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
*
* See the 'generalized domain' algorithm on page 3.
* This is the naive implementation just to make sure lodestar follows the spec, this is not for production.
* The optimized version is in `getComputeShuffledIndexFn`.
*/
export function computeShuffledIndex(index: number, indexCount: number, seed: Bytes32): number {
let permuted = index;
Expand All @@ -188,6 +373,75 @@ export function computeShuffledIndex(index: number, indexCount: number, seed: By
return permuted;
}

type ComputeShuffledIndexFn = (index: number) => number;

/**
* An optimized version of `computeShuffledIndex`, this is for production.
*/
export function getComputeShuffledIndexFn(indexCount: number, seed: Bytes32): ComputeShuffledIndexFn {
// there are possibly SHUFFLE_ROUND_COUNT (90 for mainnet) values for this cache
// this cache will always hit after the 1st call
const pivotByIndex: Map<number, number> = new Map();
// given 2M active validators, there are 2 M / 256 = 8k possible positionDiv
// it means there are at most 8k different sources for each round
const sourceByPositionDivByIndex: Map<number, Map<number, Uint8Array>> = new Map();
// 32 bytes seed + 1 byte i
const pivotBuffer = Buffer.alloc(32 + 1);
pivotBuffer.set(seed, 0);
// 32 bytes seed + 1 byte i + 4 bytes positionDiv
const sourceBuffer = Buffer.alloc(32 + 1 + 4);
sourceBuffer.set(seed, 0);

return (index): number => {
assert.lt(index, indexCount, "indexCount must be less than index");
assert.lte(indexCount, 2 ** 40, "indexCount too big");
let permuted = index;
const _seed = seed;
for (let i = 0; i < SHUFFLE_ROUND_COUNT; i++) {
// optimized version of the below naive code
// const pivot = Number(
// bytesToBigInt(digest(Buffer.concat([_seed, intToBytes(i, 1)])).slice(0, 8)) % BigInt(indexCount)
// );

let pivot = pivotByIndex.get(i);
if (pivot == null) {
// naive version always creates a new buffer, we can reuse the buffer
// pivot = Number(
// bytesToBigInt(digest(Buffer.concat([_seed, intToBytes(i, 1)])).slice(0, 8)) % BigInt(indexCount)
// );
pivotBuffer[32] = i % 256;
pivot = Number(bytesToBigInt(digest(pivotBuffer).subarray(0, 8)) % BigInt(indexCount));
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

added: use subarray instead of slice

pivotByIndex.set(i, pivot);
}

const flip = (pivot + indexCount - permuted) % indexCount;
const position = Math.max(permuted, flip);

// optimized version of the below naive code
// const source = digest(Buffer.concat([_seed, intToBytes(i, 1), intToBytes(Math.floor(position / 256), 4)]));
let sourceByPositionDiv = sourceByPositionDivByIndex.get(i);
if (sourceByPositionDiv == null) {
sourceByPositionDiv = new Map<number, Uint8Array>();
sourceByPositionDivByIndex.set(i, sourceByPositionDiv);
}
const positionDiv256 = Math.floor(position / 256);
let source = sourceByPositionDiv.get(positionDiv256);
if (source == null) {
// naive version always creates a new buffer, we can reuse the buffer
// don't want to go through intToBytes() to avoid BigInt
sourceBuffer[32] = i % 256;
sourceBuffer.writeUint32LE(positionDiv256, 33);
source = digest(sourceBuffer);
sourceByPositionDiv.set(positionDiv256, source);
}
const byte = source[Math.floor((position % 256) / 8)];
const bit = (byte >> (position % 8)) % 2;
permuted = bit ? flip : permuted;
}
return permuted;
};
}

/**
* Return the randao mix at a recent [[epoch]].
*/
Expand Down
Loading
Loading