Skip to content

[Eurographics '25] Official Implementation of StyleBlend: Enhancing Style-Specific Content Creation in Text-to-Image Diffusion Models

License

Notifications You must be signed in to change notification settings

zichongc/StyleBlend

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StyleBlend: Enhancing Style-Specific Content Creation in Text-to-Image Diffusion Models

  


TL;DR: A finetuning-based approach for style-specific text-to-image generation that ensures robust style consistency and aligns textual semantics.

⚙️ Getting Started

Steup

conda create -n styleblend python=3.10
conda activate styleblend
pip install -r requirements.txt

Configure Parameters

  • Specify the configs/training_config_sd21.yaml file to adjust training parameters as needed.
  • Specify the configs/inference_config_sd21.yaml file to adjust inference parameters.

The parameters.json file provides additional parameters for example styles used during inference. These parameters are configured in the styleblend_sd.ipynb inference script.

🔥 Style Representation Learning

Run style_learning.ipynb step by step to capture composition and texture styles.

Train Your Own Style

  1. Organize your style images
    1. Name your style and create a folder ./data/[YOUR_STYLE_NAME] to store the images.
    2. Rename your style images. Use one or a few words to describe the content of each image, and name the style image in the format [DESCRIPTION].png. If there are multiple words, use underscores to replace spaces, for example [DESC1_DESC2].png.
  2. Run style_learning.ipynb step by step.

💫 Inference

Run styleblend_sd.ipynb step by step for inference.

BibTex

@misc{chen2025styleblend,
    title={StyleBlend: Enhancing Style-Specific Content Creation in Text-to-Image Diffusion Models}, 
    author={Zichong Chen and Shijin Wang and Yang Zhou},
    year={2025},
    eprint={2502.09064},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2502.09064}, 
}

About

[Eurographics '25] Official Implementation of StyleBlend: Enhancing Style-Specific Content Creation in Text-to-Image Diffusion Models

Topics

Resources

License

Stars

Watchers

Forks