Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

198 new entries to c13 sub category to identify tropical cyclone forecast from machine learning #207

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion C13.csv
Original file line number Diff line number Diff line change
Expand Up @@ -73,9 +73,11 @@ CodeFigure_DataCategories,Name_DataCategories_en,CodeFigure_InternationalDataSub
6,Radar data,1,Doppler wind profiles,Operational
6,Radar data,2,Derived products,Operational
6,Radar data,3,Ground radar weather (RADOB),Operational
7,Synoptic features,0,Forecast tropical cyclone tracks from EPS,Operational
7,Synoptic features,0,Forecast tropical cyclone tracks from ensemble prediction system,Operational
7,Synoptic features,1,Squall line,Operational
7,Synoptic features,2,Forecast tropical cyclone from deterministic system,Operational
7,Synoptic features,3,Forecast tropical cyclone from machine learning deterministic system,Operational
7,Synoptic features,4,Forecast tropical cyclone from machine learning ensemble prediction system,Operational
8,Physical/chemical constituents,0,Surface ozone,Operational
8,Physical/chemical constituents,1,Ozone vertical sounding,Operational
8,Physical/chemical constituents,2,Total ozone,Operational
Expand Down
16 changes: 15 additions & 1 deletion xml/C13.xml
Original file line number Diff line number Diff line change
Expand Up @@ -522,7 +522,7 @@
<CodeFigure_DataCategories>7</CodeFigure_DataCategories>
<Name_DataCategories_en>Synoptic features</Name_DataCategories_en>
<CodeFigure_InternationalDataSubcategories>0</CodeFigure_InternationalDataSubcategories>
<Name_InternationalDataSubcategories_en>Forecast tropical cyclone tracks from EPS</Name_InternationalDataSubcategories_en>
<Name_InternationalDataSubcategories_en>Forecast tropical cyclone tracks from ensemble prediction system</Name_InternationalDataSubcategories_en>
<Status>Operational</Status>
</C13>
<C13>
Expand All @@ -539,6 +539,20 @@
<Name_InternationalDataSubcategories_en>Forecast tropical cyclone from deterministic system</Name_InternationalDataSubcategories_en>
<Status>Operational</Status>
</C13>
<C13>
<CodeFigure_DataCategories>7</CodeFigure_DataCategories>
<Name_DataCategories_en>Synoptic features</Name_DataCategories_en>
<CodeFigure_InternationalDataSubcategories>3</CodeFigure_InternationalDataSubcategories>
<Name_InternationalDataSubcategories_en>Forecast tropical cyclone from machine learning deterministic system</Name_InternationalDataSubcategories_en>
<Status>Operational</Status>
</C13>
<C13>
<CodeFigure_DataCategories>7</CodeFigure_DataCategories>
<Name_DataCategories_en>Synoptic features</Name_DataCategories_en>
<CodeFigure_InternationalDataSubcategories>4</CodeFigure_InternationalDataSubcategories>
<Name_InternationalDataSubcategories_en>Forecast tropical cyclone from machine learning ensemble prediction system</Name_InternationalDataSubcategories_en>
<Status>Operational</Status>
</C13>
<C13>
<CodeFigure_DataCategories>8</CodeFigure_DataCategories>
<Name_DataCategories_en>Physical/chemical constituents</Name_DataCategories_en>
Expand Down
Loading