liver-specific deconvolution model for mouse

- RNA-seq data (fastq files) are available in GEO dataset. The accession number is GSE237801.
/Data
directoryfacs_true_population.csv
: The ground truth cell type proportion matrix obtained by flow cytometry. (P)mix_processed.csv
: Bulk gene expression for 11588 genes across 57 mouse liver injury samples. (Y)ref_13types.csv
: Specific gene expression profiles for 13 cell types. (X)
├─Data
│ │ facs_true_population.csv
│ │ mix_processed.csv
│ │ ref_13types.csv
│ │ tpm_mix_raw.csv
│ │
│ └─info
│ batch_info.csv
│ blood_biochemistry_values.csv
│ Mouse_stable2MouseMGI.csv
│ Sample_Summary.xlsx
/Sample_Codes
directory0_data_preprocessing.ipynb
: guides the processing method of the acquired raw files and the storage location of the various data.1_input_data.ipynb
: provides the shape of the data assumed for input.2_simple_deconv_with_LM13.ipynb
: explains the procedure for performing a simple deconvolution method.3_reference_comb_optimization.ipynb
: provides an example of reference optimization in the paper.
- peer-reviewed article
- Not yet
- preprint
Please cite the following if you use any contents of this repository:
Azuma I*, Mizuno T*,§, Morita K, Kusuhara H. Investigation of the usefulness of liver-specific deconvolution method toward legacy data utilization. bioRxiv 2023.04.19.537436; doi: https://doi.org/10.1101/2023.04.19.537436 0 Citations
- Iori Azuma
- main contributor
- Tadahaya Mizuno
- correspondence
If you have any questions or comments, please feel free to create an issue on github here, or email us:
- phazuma19980625[at]gmail.com
- tadahaya[at]gmail.com
- lead contact