Skip to content

tadahayamiz/LiverDeconv

 
 

Repository files navigation

LiverDeconv

liver-specific deconvolution model for mouse

Data

  • RNA-seq data (fastq files) are available in GEO dataset. The accession number is GSE237801.
  • /Data directory
    • facs_true_population.csv: The ground truth cell type proportion matrix obtained by flow cytometry. (P)
    • mix_processed.csv: Bulk gene expression for 11588 genes across 57 mouse liver injury samples. (Y)
    • ref_13types.csv: Specific gene expression profiles for 13 cell types. (X)
├─Data
│  │  facs_true_population.csv
│  │  mix_processed.csv
│  │  ref_13types.csv
│  │  tpm_mix_raw.csv
│  │
│  └─info
│          batch_info.csv
│          blood_biochemistry_values.csv
│          Mouse_stable2MouseMGI.csv
│          Sample_Summary.xlsx

Sample Code

  • /Sample_Codes directory
    • 0_data_preprocessing.ipynb: guides the processing method of the acquired raw files and the storage location of the various data.
    • 1_input_data.ipynb: provides the shape of the data assumed for input.
    • 2_simple_deconv_with_LM13.ipynb: explains the procedure for performing a simple deconvolution method.
    • 3_reference_comb_optimization.ipynb: provides an example of reference optimization in the paper.

Publication

  • peer-reviewed article
    • Not yet
  • preprint

Citation

Please cite the following if you use any contents of this repository:

Azuma I*, Mizuno T*,§, Morita K, Kusuhara H. Investigation of the usefulness of liver-specific deconvolution method toward legacy data utilization. bioRxiv 2023.04.19.537436; doi: https://doi.org/10.1101/2023.04.19.537436 0 Citations

Authors

Contact

If you have any questions or comments, please feel free to create an issue on github here, or email us:

  • phazuma19980625[at]gmail.com
  • tadahaya[at]gmail.com
    • lead contact

About

liver-specific deconvolution model

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 99.6%
  • Python 0.4%