Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

to_device: Handle nested lists/tuples recursively #658

Merged
merged 8 commits into from
Jul 2, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGES.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Raise `FutureWarning` when using `CyclicLR` scheduler, because the default behavior has changed from taking a step every batch to taking a step every epoch. (#626)
- Set train/validation on criterion if it's a PyTorch module (#621)
- Don't pass `y=None` to `NeuralNet.train_split` to enable the direct use of split functions without positional `y` in their signatures. This is useful when working with unsupervised data (#605).
- `to_numpy` is now able to unpack dicts and lists/tuples (#657, #658)

### Fixed

Expand Down
103 changes: 100 additions & 3 deletions skorch/tests/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,69 @@ def test_sparse_tensor_not_accepted_raises(self, to_tensor, device):
assert exc.value.args[0] == msg


class TestToNumpy:
@pytest.fixture
def to_numpy(self):
from skorch.utils import to_numpy
return to_numpy

@pytest.fixture
def x_tensor(self):
return torch.zeros(3, 4)

@pytest.fixture
def x_tuple(self):
return torch.ones(3), torch.zeros(3, 4)

@pytest.fixture
def x_list(self):
return [torch.ones(3), torch.zeros(3, 4)]

@pytest.fixture
def x_dict(self):
return {'a': torch.ones(3), 'b': (torch.zeros(2), torch.zeros(3))}

def compare_array_to_tensor(self, x_numpy, x_tensor):
assert isinstance(x_tensor, torch.Tensor)
assert isinstance(x_numpy, np.ndarray)
assert x_numpy.shape == x_tensor.shape
for a, b in zip(x_numpy.flatten(), x_tensor.flatten()):
assert np.isclose(a, b.item())

def test_tensor(self, to_numpy, x_tensor):
x_numpy = to_numpy(x_tensor)
self.compare_array_to_tensor(x_numpy, x_tensor)

def test_list(self, to_numpy, x_list):
x_numpy = to_numpy(x_list)
for entry_numpy, entry_torch in zip(x_numpy, x_list):
self.compare_array_to_tensor(entry_numpy, entry_torch)

def test_tuple(self, to_numpy, x_tuple):
x_numpy = to_numpy(x_tuple)
for entry_numpy, entry_torch in zip(x_numpy, x_tuple):
self.compare_array_to_tensor(entry_numpy, entry_torch)

def test_dict(self, to_numpy, x_dict):
x_numpy = to_numpy(x_dict)
self.compare_array_to_tensor(x_numpy['a'], x_dict['a'])
self.compare_array_to_tensor(x_numpy['b'][0], x_dict['b'][0])
self.compare_array_to_tensor(x_numpy['b'][1], x_dict['b'][1])

@pytest.mark.parametrize('x_invalid', [
1,
[1,2,3],
(1,2,3),
{'a': 1},
])
def test_invalid_inputs(self, to_numpy, x_invalid):
# Inputs that are invalid for the scope of to_numpy.
with pytest.raises(TypeError) as e:
to_numpy(x_invalid)
expected = "Cannot convert this data type to a numpy array."
assert e.value.args[0] == expected


class TestToDevice:
@pytest.fixture
def to_device(self):
Expand All @@ -155,13 +218,17 @@ def x_dict(self):
'x': torch.zeros(3),
'y': torch.ones((4, 5))
}

@pytest.fixture
def x_pad_seq(self):
value = torch.zeros((5, 3)).float()
length = torch.as_tensor([2, 2, 1])
return pack_padded_sequence(value, length)

@pytest.fixture
def x_list(self):
return [torch.zeros(3), torch.ones(2, 4)]

def check_device_type(self, tensor, device_input, prev_device):
"""assert expected device type conditioned on the input argument for `to_device`"""
if None is device_input:
Expand Down Expand Up @@ -214,7 +281,7 @@ def test_check_device_tuple_torch_tensor(
x_tup = to_device(x_tup, device=device_to)
for xi, prev_d in zip(x_tup, prev_devices):
self.check_device_type(xi, device_to, prev_d)

@pytest.mark.parametrize('device_from, device_to', [
('cpu', 'cpu'),
('cpu', 'cuda'),
Expand Down Expand Up @@ -244,7 +311,7 @@ def test_check_device_dict_torch_tensor(
assert x_dict.keys() == original_x_dict.keys()
for k in x_dict:
assert np.allclose(x_dict[k], original_x_dict[k])

@pytest.mark.parametrize('device_from, device_to', [
('cpu', 'cpu'),
('cpu', 'cuda'),
Expand All @@ -267,6 +334,36 @@ def test_check_device_packed_padded_sequence(
x_pad_seq = to_device(x_pad_seq, device=device_to)
self.check_device_type(x_pad_seq.data, device_to, prev_device)

@pytest.mark.parametrize('device_from, device_to', [
('cpu', 'cpu'),
('cpu', 'cuda'),
('cuda', 'cpu'),
('cuda', 'cuda'),
(None, None),
])
def test_nested_data(self, to_device, x_list, device_from, device_to):
# Sometimes data is nested because it would need to be padded so it's
# easier to return a list of tensors with different shapes.
# to_device should honor this.
if 'cuda' in (device_from, device_to) and not torch.cuda.is_available():
pytest.skip()

prev_devices = [None for _ in range(len(x_list))]
if None in (device_from, device_to):
prev_devices = [x.device.type for x in x_list]

x_list = to_device(x_list, device=device_from)
assert isinstance(x_list, list)

for xi, prev_d in zip(x_list, prev_devices):
self.check_device_type(xi, device_from, prev_d)

x_list = to_device(x_list, device=device_to)
assert isinstance(x_list, list)

for xi, prev_d in zip(x_list, prev_devices):
self.check_device_type(xi, device_to, prev_d)


class TestDuplicateItems:
@pytest.fixture
Expand Down
11 changes: 9 additions & 2 deletions skorch/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,10 @@ def to_tensor(X, device, accept_sparse=False):
def to_numpy(X):
"""Generic function to convert a pytorch tensor to numpy.

This function tries to unpack the tensor(s) from supported
data structures (e.g., dicts, lists, etc.) but doesn't go
beyond.

Returns X when it already is a numpy array.

"""
Expand All @@ -116,6 +120,9 @@ def to_numpy(X):
if is_pandas_ndframe(X):
return X.values

if isinstance(X, (tuple, list)):
return type(X)(to_numpy(x) for x in X)

if not is_torch_data_type(X):
raise TypeError("Cannot convert this data type to a numpy array.")

Expand Down Expand Up @@ -154,8 +161,8 @@ def to_device(X, device):
return {key: to_device(val,device) for key, val in X.items()}

# PackedSequence class inherits from a namedtuple
if isinstance(X, tuple) and (type(X) != PackedSequence):
return tuple(x.to(device) for x in X)
if isinstance(X, (tuple, list)) and (type(X) != PackedSequence):
return type(X)(to_device(x, device) for x in X)
return X.to(device)


Expand Down