This repository supplements the paper "Instrument Recognition in Laparoscopy for Technical Skill Assessment". This implementation generates segmentation masks for each instrument, visible in gynecologic laparoscopy surgeries.
Provided artifacts:
- Dataset release (in progress ...)
- Source code to train, and validate models
- PyTroch model, trained on instseg34405-gyn
- Source code to use the model with videos
- Set up a Python3 environment
- Install PyTorch 1.1.0 and TorchVision 0.3.0
- Install dependencies:
pip install -r ./requirements.txt
- Clone this repository
- Set up repository with submodules
# Hints: Cloning, Pulling and Pushing with submodules
# clone this repo with submodules
git clone --recursive [URL to Git repo]
# pull all changes to this reopo and to submodules
git pull --recurse-submodules
# pull all changes to submodules only
git submodule update --remote
# push all changes
git submodule foreach git push origin master
# add submodule afterwards
cd ./
git submodule add -b master --name torchvision_mrcnn https://github.com/skletz/torchvision-mrcnn.git model/torchvision_mrcnn
git submodule init
- Download the dataset
- Set up env variables
cd experiment/.envs
nano .train
# set env for EXP_ROOT_DIR
EXP_ROOT_DIR=/path/to
- Set the path to dataset's input directory
DATA=${EXP_ROOT_DIR}/datasets
- Set the path to model's output directory
MODEL=${EXP_ROOT_DIR}/experiments
- Start training script
train.py --model_dir=${MODEL} --data_dir=${DATA}
# Download link
# In progress ...
- Set up env variables
cd demo/.envs
nano .run_video
# set env for CUR_ROOT_DIR
CUR_ROOT_DIR=/path/to
- Download the model
- Set up input variables
INPUT_VDO=${CUR_ROOT_DIR}/video.mp4
OUTPUT_DIR=${CUR_ROOT_DIR}/output/
MODEL=${CUR_ROOT_DIR}/path/to/model/instseg34405-gyn.pth.tar
- Start script
run_video.py --input=${INPUT_VDO} --output=${OUTPUT_DIR} --model=${MODEL}
Resulting model at epoch 48, i.e., after 5,856 iterations with 122 batches per epoch and 2 images per batch:
# Download link
# In progress ...
![]() |
---|
Average precision and loss during training for 50 epochs. |
bbox=bounding box, segm=segmentation mask, t=training, tv=validation |
![]() |
![]() |
---|---|
Individual training errors. | Individual validation errors. |
Grasping example. |
Coagulation example. |
If you use this code base or the model trained on instseg34405-gyn in your work, please cite:
@inproceedings{kletz2020instseg34405,
author="Kletz, Sabrina and Schoeffmann, Klaus and Leibetseder, Andreas
and Benois-Pineau, Jenny and Husslein, Heinrich",
title="Instrument Recognition in Laparoscopy for Technical Skill Assessment",
year="2020",
pages="589--600",
isbn="978-3-030-37734-2",
doi="10.1007/978-3-030-37734-2_48",
url="https://link.springer.com/chapter/10.1007/978-3-030-37734-2_48",
booktitle="MultiMedia Modeling",
editor="Ro, Yong Man and Cheng, Wen-Huang and Kim, Junmo and Chu, Wei-Ta and Cui, Peng and Choi, Jung-Woo and Hu, Min-Chun and De Neve, Wesley",
publisher="Springer International Publishing",
address="Cham"
}
For questions about our paper or code, please contact Sabrina Kletz.