Skip to content

Autonomous reinforcement learning agent for Cities Skylines 2 that learns to play through pure visual observation and simulated keyboard/mouse inputs. Uses end-to-end deep RL with no access to game internals.

License

Notifications You must be signed in to change notification settings

sfatkhutdinov/cities-skylines-2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Cities Skylines 2 Autonomous Agent

Cities Skylines 2

๐ŸŒ† Overview

This project implements an autonomous reinforcement learning agent that learns to play Cities Skylines 2 through pure visual observation and keyboard/mouse inputs. The agent operates with no access to the game's internal state or API, using only what it can "see" on screen to make decisions.

๐Ÿง  Technical Architecture

The project uses a deep reinforcement learning approach with the following components:

Core Components

  • Environment: Captures game state through screen capture, processes observations, and manages interactions with the game.

    • environment/core: Core environment interfaces and infrastructure
    • environment/input: Keyboard and mouse input simulation
    • environment/menu: Menu detection and navigation
    • environment/rewards: Reward computation based on visual changes
    • environment/mock_environment.py: Simulated environment for testing without the game
    • environment/optimized_capture.py: Optimized screen capture implementation
    • environment/visual_metrics.py: Visual metrics and measurements
  • Agent: Implements the PPO (Proximal Policy Optimization) reinforcement learning algorithm.

    • agent/core: Core agent components (policy, value, memory, updater)
    • agent/memory_agent.py: Memory-augmented agent implementation
    • agent/hierarchical_agent.py: Hierarchical agent architecture
  • Memory: Implements memory-augmented architectures for enhanced agent capabilities.

    • memory/memory_augmented_network.py: Neural memory architecture
    • memory/episodic_memory.py: Episodic memory functionality
  • Model: Neural network architecture for policy and value functions.

    • model/optimized_network.py: Optimized CNN network for visual processing
    • model/visual_understanding_network.py: Visual scene understanding
    • model/world_model.py: World modeling for predictions
    • model/error_detection_network.py: Error detection for the game
  • Training: Manages the training process, checkpoints, and signal handling.

    • training/trainer.py: Training loop and management
    • training/checkpointing.py: Checkpoint saving and loading
    • training/signal_handlers.py: Handles interrupts and signals
    • training/memory_trainer.py: Trainer for memory-augmented agent
    • training/hierarchical_trainer.py: Trainer for hierarchical agent
  • Utils: Utility functions and services including monitoring capabilities.

    • utils/image_utils.py: Image processing utilities
    • utils/hardware_monitor.py: System resource monitoring
    • utils/performance_safeguards.py: Ensures stable performance
    • utils/visualization.py: Visualization tools
    • utils/path_utils.py: Path management for consistent file locations
  • Config: Configuration for hardware and action space.

    • config/hardware_config.py: Hardware configuration
    • config/action_space.py: Action space definition
    • config/training_config.py: Training parameters and settings
    • config/config_loader.py: Configuration loading utilities
  • Benchmarks: Tools for performance analysis and optimization.

    • benchmarks/benchmark_agent.py: Measures agent performance metrics
  • Tests: Automated testing infrastructure.

    • tests/test_mock_environment.py: Tests for the mock environment

Project Structure

cities-skylines-2/
โ”œโ”€โ”€ src/                                # Source code directory
โ”‚   โ”œโ”€โ”€ agent/                          # Agent modules
โ”‚   โ”‚   โ”œโ”€โ”€ core/                       # Core agent components
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ memory.py               # Memory buffer implementation
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ policy.py               # Policy network and action selection
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ppo_agent.py            # PPO algorithm implementation
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ updater.py              # Network update logic
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ value.py                # Value function implementation
โ”‚   โ”‚   โ”œโ”€โ”€ hierarchical_agent.py       # Hierarchical agent architecture
โ”‚   โ”‚   โ””โ”€โ”€ memory_agent.py             # Memory-augmented agent implementation
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ benchmarks/                     # Benchmarking tools
โ”‚   โ”‚   โ””โ”€โ”€ benchmark_agent.py          # Agent performance evaluation
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ config/                         # Configuration
โ”‚   โ”‚   โ”œโ”€โ”€ defaults/                   # Default configuration files
โ”‚   โ”‚   โ”œโ”€โ”€ action_space.py             # Action space definition
โ”‚   โ”‚   โ”œโ”€โ”€ config_loader.py            # Configuration loading utilities
โ”‚   โ”‚   โ”œโ”€โ”€ example_config.json         # Example configuration file
โ”‚   โ”‚   โ”œโ”€โ”€ hardware_config.py          # Hardware-specific configuration
โ”‚   โ”‚   โ””โ”€โ”€ training_config.py          # Training parameters and settings
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ environment/                    # Environment modules
โ”‚   โ”‚   โ”œโ”€โ”€ core/                       # Core environment components
โ”‚   โ”‚   โ”œโ”€โ”€ input/                      # Keyboard and mouse input simulation
โ”‚   โ”‚   โ”œโ”€โ”€ menu/                       # Menu detection and navigation
โ”‚   โ”‚   โ”œโ”€โ”€ rewards/                    # Reward computation
โ”‚   โ”‚   โ”œโ”€โ”€ mock_environment.py         # Simulated environment
โ”‚   โ”‚   โ”œโ”€โ”€ optimized_capture.py        # Screen capture optimization
โ”‚   โ”‚   โ””โ”€โ”€ visual_metrics.py           # Visual-based metrics calculation
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ memory/                         # Memory-augmented architectures
โ”‚   โ”‚   โ”œโ”€โ”€ episodic_memory.py          # Episodic memory implementation
โ”‚   โ”‚   โ””โ”€โ”€ memory_augmented_network.py # Neural network with memory capabilities
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ model/                          # Neural network models
โ”‚   โ”‚   โ”œโ”€โ”€ error_detection_network.py  # Error detection for the game
โ”‚   โ”‚   โ”œโ”€โ”€ optimized_network.py        # Optimized CNN architecture
โ”‚   โ”‚   โ”œโ”€โ”€ visual_understanding_network.py # Visual scene understanding
โ”‚   โ”‚   โ””โ”€โ”€ world_model.py              # World modeling for predictions
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ training/                       # Training infrastructure
โ”‚   โ”‚   โ”œโ”€โ”€ checkpointing.py            # Model checkpoint management
โ”‚   โ”‚   โ”œโ”€โ”€ hierarchical_trainer.py     # Trainer for hierarchical agent
โ”‚   โ”‚   โ”œโ”€โ”€ memory_trainer.py           # Trainer for memory-augmented agent
โ”‚   โ”‚   โ”œโ”€โ”€ signal_handlers.py          # Handles system signals during training
โ”‚   โ”‚   โ”œโ”€โ”€ trainer.py                  # Base trainer implementation
โ”‚   โ”‚   โ””โ”€โ”€ utils.py                    # Training utility functions
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ tests/                          # Test scripts
โ”‚   โ”‚   โ””โ”€โ”€ test_mock_environment.py    # Tests for the mock environment
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ utils/                          # Utility functions and monitoring
โ”‚   โ”‚   โ”œโ”€โ”€ hardware_monitor.py         # System resource monitoring
โ”‚   โ”‚   โ”œโ”€โ”€ image_utils.py              # Image processing utilities
โ”‚   โ”‚   โ”œโ”€โ”€ path_utils.py               # Path management for consistent file locations
โ”‚   โ”‚   โ”œโ”€โ”€ performance_safeguards.py   # Ensures stable performance
โ”‚   โ”‚   โ””โ”€โ”€ visualization.py            # Data visualization tools
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ __init__.py                     # Package initialization
โ”‚   โ””โ”€โ”€ train.py                        # Main training entry point
โ”‚
โ”œโ”€โ”€ docs/                               # Documentation
โ”‚   โ”œโ”€โ”€ agent.md                        # Agent documentation
โ”‚   โ”œโ”€โ”€ architecture.md                 # System architecture overview
โ”‚   โ”œโ”€โ”€ environment.md                  # Environment documentation
โ”‚   โ”œโ”€โ”€ improvements.md                 # Future improvements
โ”‚   โ”œโ”€โ”€ model.md                        # Model documentation
โ”‚   โ”œโ”€โ”€ README.md                       # Documentation overview
โ”‚   โ””โ”€โ”€ training.md                     # Training process documentation
โ”‚
โ”œโ”€โ”€ scripts/                            # Utility scripts
โ”‚   โ”œโ”€โ”€ benchmark.py                    # Performance benchmarking
โ”‚   โ”œโ”€โ”€ dashboard.py                    # Real-time monitoring dashboard
โ”‚   โ”œโ”€โ”€ hyperparameter_tuning.py        # Hyperparameter optimization
โ”‚   โ”œโ”€โ”€ run_environment.py              # Run the environment standalone
โ”‚   โ”œโ”€โ”€ run_mock_training.py            # Training with mock environment
โ”‚   โ””โ”€โ”€ visualize_training.py           # Training visualization tools
โ”‚
โ”œโ”€โ”€ .github/                            # GitHub configuration
โ”œโ”€โ”€ .gitignore                          # Git ignore rules
โ”œโ”€โ”€ CONTRIBUTING.md                     # Contribution guidelines
โ”œโ”€โ”€ LICENSE                             # Project license
โ”œโ”€โ”€ README.md                           # Main README (this file)
โ””โ”€โ”€ requirements.txt                    # Python dependencies

Note: The following directories are created at runtime:

  • logs/: Generated log files and tensorboard data
  • output/: Generated outputs, visualizations, and benchmark results
  • checkpoints/: Model checkpoints during and after training

These directories are automatically created in the project root when needed by the application. All paths are managed by the path utilities in src/utils/path_utils.py, ensuring consistent file locations regardless of which directory you run the scripts from.

๐Ÿš€ Installation

Prerequisites

  • Windows 10/11
  • NVIDIA GPU (RTX 3080 Ti recommended)
  • Cities: Skylines 2
  • Python 3.10+

Setup

  1. Clone the repository:
git clone https://github.com/sfatkhutdinov/cities-skylines-2.git
cd cities-skylines-2-agent
  1. Create a virtual environment:
python -m venv venv
  1. Activate the virtual environment:
# On Windows
venv\Scripts\activate
# On Linux/Mac
source venv/bin/activate
  1. Install dependencies:
pip install -r requirements.txt

๐ŸŽฎ Usage

Training

To start training the agent:

python src/train.py

Common options:

--num_episodes=1000     # Number of episodes to train
--max_steps=1000        # Maximum steps per episode
--checkpoint_dir=checkpoints  # Directory to save checkpoints
--render                # Display visualization during training
--mock_env              # Use mock environment for testing
--mixed_precision       # Enable mixed precision training
--hardware_config=path/to/config.json  # Custom hardware configuration

Testing with Mock Environment

The project includes a mock environment for testing without requiring the actual game:

python src/tests/test_mock_environment.py

This will run a series of tests on the mock environment, including:

  • Basic functionality tests
  • Complete episode simulation
  • Error condition handling (crashes, freezes, menus)
  • Visualization generation

The mock environment simulates:

  • City building mechanics
  • Population and budget dynamics
  • Game crashes and freezes
  • Menu interactions
  • Reward computation

Benchmarking

Run comprehensive benchmarks on the agent and environment:

python src/benchmarks/benchmark_agent.py --episodes=10 --steps=500 --output=benchmark_results

Common options:

--episodes=10           # Number of episodes to run
--steps=500             # Maximum steps per episode
--config=path/to/config.json  # Configuration file
--output=benchmark_results  # Output directory name
--gpu                   # Force GPU usage
--cpu                   # Force CPU usage
--mixed_precision       # Use mixed precision

The benchmark will generate:

  • Performance metrics (rewards, episode lengths, success rates)
  • Hardware utilization statistics (CPU, GPU, memory)
  • Visualizations of agent performance
  • Detailed JSON and text reports

Utility Scripts

The project includes several utility scripts to help with development, analysis, and monitoring:

Hyperparameter Tuning

Optimize agent hyperparameters:

python scripts/hyperparameter_tuning.py --method=random --trials=10 --visualize

Common options:

--output=hyperparameter_results  # Output directory for results
--method=[grid|random]  # Search method (grid or random search)
--trials=10             # Number of trials for random search
--mock                  # Use mock environment
--epochs=5              # Training epochs per trial
--episodes=5            # Episodes per epoch
--parallel=4            # Number of parallel trials to run
--visualize             # Generate visualizations of results

Dashboard

Run a real-time dashboard to monitor agent performance:

streamlit run scripts/dashboard.py -- --log_dir=logs

Common options:

--log_dir=logs          # Directory containing training logs
--port=8501             # Port to run the dashboard on
--host=localhost        # Host to run the dashboard on
--refresh_interval=30   # Dashboard refresh interval in seconds

๐Ÿ“‹ Documentation

See the docs directory for detailed documentation on each component.

๐Ÿงช Testing

Run the tests with:

python -m unittest discover tests

๐Ÿ“Š Performance Optimization Features

The agent includes several performance optimization features:

  • Adaptive Resource Management: Automatically adjusts resource usage based on system capabilities
  • Mixed Precision Training: Reduces memory usage and increases training speed on compatible GPUs
  • Error Recovery: Handles game crashes and freezes gracefully to continue training
  • Hardware Monitoring: Tracks system resource usage to identify bottlenecks
  • Performance Benchmarking: Tools to measure and optimize agent performance

๐Ÿ“ˆ Monitoring

Training progress is logged to the logs directory. You can also use Weights & Biases for more detailed monitoring:

python src/train.py --use_wandb

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Autonomous reinforcement learning agent for Cities Skylines 2 that learns to play through pure visual observation and simulated keyboard/mouse inputs. Uses end-to-end deep RL with no access to game internals.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages