Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

new: Add sparse type hints #460

Merged
merged 2 commits into from
Feb 4, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions fastembed/sparse/bm25.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def __init__(
self.avg_len = avg_len

model_description = self._get_model_description(model_name)
self.cache_dir = define_cache_dir(cache_dir)
self.cache_dir = str(define_cache_dir(cache_dir))

self._model_dir = self.download_model(
model_description,
Expand All @@ -137,7 +137,7 @@ def __init__(
self.disable_stemmer = disable_stemmer

if disable_stemmer:
self.stopwords = set()
self.stopwords: set[str] = set()
self.stemmer = None
else:
self.stopwords = set(self._load_stopwords(self._model_dir, self.language))
Expand Down Expand Up @@ -239,7 +239,7 @@ def embed(
)

def _stem(self, tokens: list[str]) -> list[str]:
stemmed_tokens = []
stemmed_tokens: list[str] = []
for token in tokens:
lower_token = token.lower()

Expand All @@ -262,7 +262,7 @@ def raw_embed(
self,
documents: list[str],
) -> list[SparseEmbedding]:
embeddings = []
embeddings: list[SparseEmbedding] = []
for document in documents:
document = remove_non_alphanumeric(document)
tokens = self.tokenizer.tokenize(document)
Expand All @@ -286,8 +286,8 @@ def _term_frequency(self, tokens: list[str]) -> dict[int, float]:
Returns:
dict[int, float]: The token_id to term frequency mapping.
"""
tf_map = {}
counter = defaultdict(int)
tf_map: dict[int, float] = {}
counter: defaultdict[str, int] = defaultdict(int)
for stemmed_token in tokens:
counter[stemmed_token] += 1

Expand Down
30 changes: 15 additions & 15 deletions fastembed/sparse/bm42.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def __init__(
self.device_id = None

self.model_description = self._get_model_description(model_name)
self.cache_dir = define_cache_dir(cache_dir)
self.cache_dir = str(define_cache_dir(cache_dir))

self._model_dir = self.download_model(
self.model_description,
Expand All @@ -119,10 +119,10 @@ def __init__(
specific_model_path=specific_model_path,
)

self.invert_vocab = {}
self.invert_vocab: dict[int, str] = {}

self.special_tokens = set()
self.special_tokens_ids = set()
self.special_tokens: set[str] = set()
self.special_tokens_ids: set[int] = set()
self.punctuation = set(string.punctuation)
self.stopwords = set(self._load_stopwords(self._model_dir))
self.stemmer = SnowballStemmer(MODEL_TO_LANGUAGE[model_name])
Expand All @@ -147,15 +147,15 @@ def load_onnx_model(self) -> None:
self.stopwords = set(self._load_stopwords(self._model_dir))

def _filter_pair_tokens(self, tokens: list[tuple[str, Any]]) -> list[tuple[str, Any]]:
result = []
result: list[tuple[str, Any]] = []
for token, value in tokens:
if token in self.stopwords or token in self.punctuation:
continue
result.append((token, value))
return result

def _stem_pair_tokens(self, tokens: list[tuple[str, Any]]) -> list[tuple[str, Any]]:
result = []
result: list[tuple[str, Any]] = []
for token, value in tokens:
processed_token = self.stemmer.stem_word(token)
result.append((processed_token, value))
Expand All @@ -165,7 +165,7 @@ def _stem_pair_tokens(self, tokens: list[tuple[str, Any]]) -> list[tuple[str, An
def _aggregate_weights(
cls, tokens: list[tuple[str, list[int]]], weights: list[float]
) -> list[tuple[str, float]]:
result = []
result: list[tuple[str, float]] = []
for token, idxs in tokens:
sum_weight = sum(weights[idx] for idx in idxs)
result.append((token, sum_weight))
Expand All @@ -174,9 +174,9 @@ def _aggregate_weights(
def _reconstruct_bpe(
self, bpe_tokens: Iterable[tuple[int, str]]
) -> list[tuple[str, list[int]]]:
result = []
acc = ""
acc_idx = []
result: list[tuple[str, list[int]]] = []
acc: str = ""
acc_idx: list[int] = []

continuing_subword_prefix = self.tokenizer.model.continuing_subword_prefix
continuing_subword_prefix_len = len(continuing_subword_prefix)
Expand Down Expand Up @@ -206,7 +206,7 @@ def _rescore_vector(self, vector: dict[str, float]) -> dict[int, float]:
So that the scoring doesn't depend on absolute values assigned by the model, but on the relative importance.
"""

new_vector = {}
new_vector: dict[int, float] = {}

for token, value in vector.items():
token_id = abs(mmh3.hash(token))
Expand Down Expand Up @@ -241,7 +241,7 @@ def _post_process_onnx_output(self, output: OnnxOutputContext) -> Iterable[Spars

weighted = self._aggregate_weights(stemmed, attention_value)

max_token_weight = {}
max_token_weight: dict[str, float] = {}

for token, weight in weighted:
max_token_weight[token] = max(max_token_weight.get(token, 0), weight)
Expand Down Expand Up @@ -304,7 +304,7 @@ def embed(

@classmethod
def _query_rehash(cls, tokens: Iterable[str]) -> dict[int, float]:
result = {}
result: dict[int, float] = {}
for token in tokens:
token_id = abs(mmh3.hash(token))
result[token_id] = 1.0
Expand Down Expand Up @@ -334,11 +334,11 @@ def query_embed(
yield SparseEmbedding.from_dict(self._query_rehash(token for token, _ in stemmed))

@classmethod
def _get_worker_class(cls) -> Type[TextEmbeddingWorker]:
def _get_worker_class(cls) -> Type[TextEmbeddingWorker[SparseEmbedding]]:
return Bm42TextEmbeddingWorker


class Bm42TextEmbeddingWorker(TextEmbeddingWorker):
class Bm42TextEmbeddingWorker(TextEmbeddingWorker[SparseEmbedding]):
def init_embedding(self, model_name: str, cache_dir: str, **kwargs: Any) -> Bm42:
return Bm42(
model_name=model_name,
Expand Down
9 changes: 5 additions & 4 deletions fastembed/sparse/sparse_embedding_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,16 @@

import numpy as np

from fastembed.common.types import NumpyArray
from fastembed.common.model_management import ModelManagement


@dataclass
class SparseEmbedding:
values: np.ndarray
indices: np.ndarray
values: NumpyArray
indices: NumpyArray

def as_object(self) -> dict[str, np.ndarray]:
def as_object(self) -> dict[str, NumpyArray]:
return {
"values": self.values,
"indices": self.indices,
Expand Down Expand Up @@ -81,5 +82,5 @@ def query_embed(
# This is model-specific, so that different models can have specialized implementations
if isinstance(query, str):
yield from self.embed([query], **kwargs)
if isinstance(query, Iterable):
else:
yield from self.embed(query, **kwargs)
2 changes: 1 addition & 1 deletion fastembed/sparse/sparse_text_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def list_supported_models(cls) -> list[dict[str, Any]]:
]
```
"""
result = []
result: list[dict[str, Any]] = []
for embedding in cls.EMBEDDINGS_REGISTRY:
result.extend(embedding.list_supported_models())
return result
Expand Down
6 changes: 3 additions & 3 deletions fastembed/sparse/splade_pp.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def __init__(
self.device_id = None

self.model_description = self._get_model_description(model_name)
self.cache_dir = define_cache_dir(cache_dir)
self.cache_dir = str(define_cache_dir(cache_dir))

self._model_dir = self.download_model(
self.model_description,
Expand Down Expand Up @@ -171,11 +171,11 @@ def embed(
)

@classmethod
def _get_worker_class(cls) -> Type[TextEmbeddingWorker]:
def _get_worker_class(cls) -> Type[TextEmbeddingWorker[SparseEmbedding]]:
return SpladePPEmbeddingWorker


class SpladePPEmbeddingWorker(TextEmbeddingWorker):
class SpladePPEmbeddingWorker(TextEmbeddingWorker[SparseEmbedding]):
def init_embedding(self, model_name: str, cache_dir: str, **kwargs: Any) -> SpladePP:
return SpladePP(
model_name=model_name,
Expand Down