Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft: Resnet support added #246

Merged
merged 9 commits into from
May 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 122 additions & 0 deletions experiments/Example. Convert Resnet50 to ONNX.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "4bdb2a91-fa2a-4cee-ad5a-176cc957394d",
"metadata": {
"ExecuteTime": {
"end_time": "2024-05-23T12:15:28.171586Z",
"start_time": "2024-05-23T12:15:28.076314Z"
}
},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'torch'",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mModuleNotFoundError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[1], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mtorch\u001B[39;00m\n\u001B[1;32m 2\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mtorch\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01monnx\u001B[39;00m\n\u001B[1;32m 3\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mtorchvision\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mmodels\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m \u001B[38;5;21;01mmodels\u001B[39;00m\n",
"\u001B[0;31mModuleNotFoundError\u001B[0m: No module named 'torch'"
]
}
],
"source": [
"import torch\n",
"import torch.onnx\n",
"import torchvision.models as models\n",
"import torchvision.transforms as transforms\n",
"from PIL import Image\n",
"import numpy as np\n",
"from tests.config import TEST_MISC_DIR\n",
"\n",
"# Load pre-trained ResNet-50 model\n",
"resnet = models.resnet50(pretrained=True)\n",
"resnet = torch.nn.Sequential(*(list(resnet.children())[:-1])) # Remove the last fully connected layer\n",
"resnet.eval()\n",
"\n",
"# Define preprocessing transform\n",
"preprocess = transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n",
"])\n",
"\n",
"# Load and preprocess the image\n",
"def preprocess_image(image_path):\n",
" input_image = Image.open(image_path)\n",
" input_tensor = preprocess(input_image)\n",
" input_batch = input_tensor.unsqueeze(0) # Add batch dimension\n",
" return input_batch\n",
"\n",
"# Example input for exporting\n",
"input_image = preprocess_image('example.jpg')\n",
"\n",
"# Export the model to ONNX with dynamic axes\n",
"torch.onnx.export(\n",
" resnet, \n",
" input_image, \n",
" \"model.onnx\", \n",
" export_params=True, \n",
" opset_version=9, \n",
" input_names=['input'], \n",
" output_names=['output'],\n",
" dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}\n",
")\n",
"\n",
"# Load ONNX model\n",
"import onnx\n",
"import onnxruntime as ort\n",
"\n",
"onnx_model = onnx.load(\"model.onnx\")\n",
"ort_session = ort.InferenceSession(\"model.onnx\")\n",
"\n",
"# Run inference and extract feature vectors\n",
"def extract_feature_vectors(image_paths):\n",
" input_images = [preprocess_image(image_path) for image_path in image_paths]\n",
" input_batch = torch.cat(input_images, dim=0) # Combine images into a single batch\n",
" ort_inputs = {ort_session.get_inputs()[0].name: input_batch.numpy()}\n",
" ort_outs = ort_session.run(None, ort_inputs)\n",
" return ort_outs[0]\n",
"\n",
"# Example usage\n",
"images = [TEST_MISC_DIR / \"image.jpeg\", str(TEST_MISC_DIR / \"small_image.jpeg\")] # Replace with your image paths\n",
"feature_vectors = extract_feature_vectors(images)\n",
"print(\"Feature vector shape:\", feature_vectors.shape)\n"
]
},
{
"cell_type": "code",
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
},
"id": "baa650c4cb3e0e6d"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
12 changes: 11 additions & 1 deletion fastembed/image/onnx_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,17 @@
"hf": "Qdrant/clip-ViT-B-32-vision",
},
"model_file": "model.onnx",
}
},
{
"model": "Qdrant/resnet50-onnx",
"dim": 2048,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just as a reminder: we might want to inspect other resnet models to have lower dimensionality

"description": "ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.",
"size_in_GB": 0.1,
"sources": {
"hf": "Qdrant/resnet50-onnx",
},
"model_file": "model.onnx",
},
]


Expand Down
11 changes: 7 additions & 4 deletions fastembed/image/onnx_image_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,15 +46,19 @@ def load_onnx_model(
)
self.processor = load_preprocessor(model_dir=model_dir)

def _build_onnx_input(self, encoded: np.ndarray) -> Dict[str, np.ndarray]:
return {node.name: encoded for node in self.model.get_inputs()}

def onnx_embed(self, images: List[PathInput]) -> OnnxOutputContext:
with contextlib.ExitStack():
image_files = [Image.open(image) for image in images]
encoded = self.processor(image_files)
onnx_input = {"pixel_values": encoded}
onnx_input = self._build_onnx_input(encoded)
onnx_input = self._preprocess_onnx_input(onnx_input)

model_output = self.model.run(None, onnx_input)
embeddings = model_output[0]

embeddings = model_output[0].reshape(len(images), -1)

return OnnxOutputContext(
model_output=embeddings
)
Expand Down Expand Up @@ -82,7 +86,6 @@ def _embed_images(

if parallel is None or is_small:
for batch in iter_batch(images, batch_size):
# open and preprocess images
yield from self._post_process_onnx_output(self.onnx_embed(batch))
else:
start_method = "forkserver" if "forkserver" in get_all_start_methods() else "spawn"
Expand Down
24 changes: 16 additions & 8 deletions fastembed/image/transform/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,17 @@ def convert_to_rgb(image: Image.Image) -> Image.Image:


def center_crop(
image: Image.Image,
image: Union[Image.Image, np.ndarray],
size: Tuple[int, int],
) -> np.ndarray:
orig_height, orig_width = image.height, image.width
crop_height, crop_width = size
if isinstance(image, np.ndarray):
_, orig_height, orig_width = image.shape
else:
orig_height, orig_width = image.height, image.width
# (H, W, C) -> (C, H, W)
image = np.array(image).transpose((2, 0, 1))

# (H, W, C) -> (C, H, W)
image = np.array(image).transpose((2, 0, 1))
crop_height, crop_width = size

# left upper corner (0, 0)
top = (orig_height - crop_height) // 2
Expand Down Expand Up @@ -96,7 +99,7 @@ def normalize(
def resize(
image: Image,
size: Union[int, Tuple[int, int]],
resample: Image.Resampling = Image.Resampling.BICUBIC,
resample: Image.Resampling = Image.Resampling.BILINEAR,
) -> Image:
if isinstance(size, tuple):
return image.resize(size, resample)
Expand All @@ -109,9 +112,14 @@ def resize(
new_size = (new_short, new_long)
else:
new_size = (new_long, new_short)

return image.resize(new_size, Image.Resampling.BICUBIC)
return image.resize(new_size, resample)


def rescale(image: np.ndarray, scale: float, dtype=np.float32) -> np.ndarray:
return (image * scale).astype(dtype)


def pil2ndarray(image: Union[Image.Image, np.ndarray]):
if isinstance(image, Image.Image):
return np.asarray(image).transpose((2, 0, 1))
return image
136 changes: 89 additions & 47 deletions fastembed/image/transform/operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,13 @@

import numpy as np
from PIL import Image

from fastembed.image.transform.functional import (
center_crop,
normalize,
resize,
convert_to_rgb,
rescale,
pil2ndarray
)


Expand Down Expand Up @@ -59,68 +59,110 @@ def __init__(self, scale: float = 1 / 255):
def __call__(self, images: List[np.ndarray]) -> List[np.ndarray]:
return [rescale(image, scale=self.scale) for image in images]

class PILtoNDarray(Transform):
def __call__(self, images: List[Union[Image.Image, np.ndarray]]) -> List[np.ndarray]:
return [pil2ndarray(image) for image in images]

class Compose:
def __init__(self, transforms: List[Transform]):
self.transforms = transforms

def __call__(
self, images: Union[List[Image.Image], List[np.ndarray]]
) -> Union[List[np.ndarray], List[Image.Image]]:
def __call__(self, images: Union[List[Image.Image], List[np.ndarray]]) -> Union[List[np.ndarray], List[Image.Image]]:
for transform in self.transforms:
images = transform(images)
return images

@classmethod
def from_config(cls, config: Dict[str, Any]) -> "Compose":
"""Creates processor from a config dict.

Args:
config (Dict[str, Any]): Configuration dictionary.

Valid keys:
- do_resize
- size
- do_center_crop
- crop_size
- do_rescale
- rescale_factor
- do_normalize
- image_mean
- image_std
Valid size keys (nested):
- {"height", "width"}
- {"shortest_edge"}

Returns:
Compose: Image processor.
Args:
config (Dict[str, Any]): Configuration dictionary.

Valid keys:
- do_resize
- size
- do_center_crop
- crop_size
- do_rescale
- rescale_factor
- do_normalize
- image_mean
- image_std
Valid size keys (nested):
- {"height", "width"}
- {"shortest_edge"}

Returns:
Compose: Image processor.
"""
transforms = [ConvertToRGB()]
if config.get("do_resize", False):
size = config["size"]
if "shortest_edge" in size:
size = size["shortest_edge"]
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain either 'shortest_edge' or 'height' and 'width'."
)
transforms.append(
Resize(size=size, resample=config.get("resample", Image.Resampling.BICUBIC))
)
if config.get("do_center_crop", False):
crop_size = config["crop_size"]
if isinstance(crop_size, int):
crop_size = (crop_size, crop_size)
elif isinstance(crop_size, dict):
crop_size = (crop_size["height"], crop_size["width"])
transforms = []
cls._get_convert_to_rgb(transforms, config)
cls._get_resize(transforms, config)
cls._get_center_crop(transforms, config)
cls._get_pil2ndarray(transforms, config)
cls._get_rescale(transforms, config)
cls._get_normalize(transforms, config)
return cls(transforms=transforms)

@staticmethod
def _get_convert_to_rgb(transforms: List[Transform], config: Dict[str, Any]):
transforms.append(ConvertToRGB())

@staticmethod
def _get_resize(transforms: List[Transform], config: Dict[str, Any]):
mode = config.get('image_processor_type', 'CLIPImageProcessor')
if mode == 'CLIPImageProcessor':
if config.get("do_resize", False):
size = config["size"]
if "shortest_edge" in size:
size = size["shortest_edge"]
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
transforms.append(Resize(size=size, resample=config.get("resample", Image.Resampling.BICUBIC)))
elif mode == 'ConvNextFeatureExtractor':
if 'size' in config and "shortest_edge" not in config['size']:
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {config['size'].keys()}")
shortest_edge = config['size']["shortest_edge"]
crop_pct = config.get("crop_pct", 0.875)
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
resize_shortest_edge = int(shortest_edge / crop_pct)
transforms.append(Resize(size=resize_shortest_edge, resample=config.get("resample", Image.Resampling.BICUBIC)))
transforms.append(CenterCrop(size=(shortest_edge, shortest_edge)))
else:
raise ValueError(f"Invalid crop size: {crop_size}")
transforms.append(CenterCrop(size=crop_size))
transforms.append(Resize(size=(shortest_edge, shortest_edge), resample=config.get("resample", Image.Resampling.BICUBIC)))

@staticmethod
def _get_center_crop(transforms: List[Transform], config: Dict[str, Any]):
mode = config.get('image_processor_type', 'CLIPImageProcessor')
if mode == 'CLIPImageProcessor':
if config.get("do_center_crop", False):
crop_size = config["crop_size"]
if isinstance(crop_size, int):
crop_size = (crop_size, crop_size)
elif isinstance(crop_size, dict):
crop_size = (crop_size["height"], crop_size["width"])
else:
raise ValueError(f"Invalid crop size: {crop_size}")
transforms.append(CenterCrop(size=crop_size))
elif mode == 'ConvNextFeatureExtractor':
pass
else:
raise ValueError(f"Preprocessor {mode} is not supported")

@staticmethod
def _get_pil2ndarray(transforms: List[Transform], config: Dict[str, Any]):
transforms.append(PILtoNDarray())

@staticmethod
def _get_rescale(transforms: List[Transform], config: Dict[str, Any]):
if config.get("do_rescale", True):
rescale_factor = config.get("rescale_factor", 1 / 255)
transforms.append(Rescale(scale=rescale_factor))

@staticmethod
def _get_normalize(transforms: List[Transform], config: Dict[str, Any]):
if config.get("do_normalize", False):
transforms.append(Normalize(mean=config["image_mean"], std=config["image_std"]))
return cls(transforms=transforms)
Loading
Loading