
lightweight gigachat api wrapper for smolagents
gigasmol serves two primary purposes:
- Provides direct, lightweight access to GigaChat models through GigaChat API without unnecessary abstractions
- Creates a smolagents-compatible wrapper that lets you use GigaChat within agent systems
No complex abstractions β just clean, straightforward access to GigaChat's capabilities through smolagents.
GigaChat API + smolagents = gigasmol π
- Tiny Footprint: Less than 1K lines of code total
- Simple Structure: Just 4 core files
- Zero Bloat: Only essential dependencies
- Easy to Understand: Read and comprehend the entire codebase in minutes
- Maintainable: Small, focused codebase means fewer bugs and easier updates
python>=3.8
pip install gigasmol
python>=3.10
pip install "gigasmol[agent]"
gigasmol
import json
from gigasmol import GigaChat
# Direct access to GigaChat API
gigachat = GigaChat(
auth_data="YOUR_AUTH_TOKEN",
model_name="GigaChat-Max",
)
# Generate a response
response = gigachat.chat([
{"role": "user", "content": "What is the capital of Russia?"}
])
print(response['answer']) # or print(response['response']['choices'][0]['message']['content'])
gigasmol[agent]
from gigasmol import GigaChatSmolModel
from smolagents import CodeAgent, ToolCallingAgent, DuckDuckGoSearchTool
# Initialize the GigaChat model with your credentials
model = GigaChatSmolModel(
auth_data="YOUR_AUTH_TOKEN",
model_name="GigaChat-Max"
)
# Create an CodeAgent with the model
code_agent = CodeAgent(
tools=[DuckDuckGoSearchTool()],
model=model
)
# Run the code_agent
code_agent.run("What are the main tourist attractions in Moscow?")
# Create an ToolCallingAgent with the model
tool_calling_agent = ToolCallingAgent(
tools=[DuckDuckGoSearchTool()],
model=model
)
# Run the tool_calling_agent
tool_calling_agent.run("What are the main tourist attractions in Moscow?")
GigaSmol provides two layers of functionality:
βββββββββββββββββββββββββββββββββββββββββββββββββββββ
β gigasmol β
βββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β βββββββββββββββββ βββββββββββββββββββββ β
β β Direct β β smolagents β β
β β GigaChat API β β compatibility β β
β β access β β layer β β
β βββββββββββββββββ βββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββ
β β
βΌ βΌ
βββββββββββββββ ββββββββββββββββββ
β GigaChat APIβ β Agent systems β
βββββββββββββββ ββββββββββββββββββ
- Direct API Access: Use
GigaChat
for clean, direct access to the API - smolagents Integration: Use
GigaChatSmolModel
to plug GigaChat into smolagents
Check the examples
directory:
structured_output.ipynb
: Using GigaChat API and function_calling for structured outputagents.ipynb
: Building code and tool agents with GigaChat and smolagents
- SberDevices for creating the GigaChat API
- Hugging Face for the smolagents framework