Our implementation is based on PyTorch 1.10.1+CUDA11.3. Use the following command to install the runtime environment:
conda env create -f HIPTrack_env_cuda113.yaml
Run the following command to set paths for this project
python3 tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
-
For training on datasets except GOT-10k.
Download pre-trained DropTrack/DCPT weights and put it under
$PROJECT_ROOT$/pretrained_models
.python3 tracking/train.py --script hiptrack --config hiptrack --save_dir ./output --mode multiple --nproc_per_node 4
-
For training on GOT-10k.
Download pre-trained DropTrack/DCPT weights and put it under
$PROJECT_ROOT$/pretrained_models
.python3 tracking/train.py --script hiptrack --config hiptrack_got --save_dir ./output --mode multiple --nproc_per_node 4
Change the dataset path in lib/test/evaluation/local.py
to your storage path.
- LaSOT/LLOT or other off-line evaluated benchmarks (modify
--dataset
correspondingly)
python3 tracking/test.py hiptrack hiptrack --dataset lasot --threads 1 --num_gpus 1
python3 tracking/analysis_results.py # need to modify tracker configs and names
- GOT10K-test
python3 tracking/test.py hiptrack hiptrack_got --dataset got10k_test --threads 1 --num_gpus 1
python3 lib/test/utils/transform_got10k.py --tracker_name hiptrack --cfg_name hiptrack_got
- TrackingNet
python3 tracking/test.py hiptrack hiptrack --dataset trackingnet --threads 1 --num_gpus 1
python3 lib/test/utils/transform_trackingnet.py --tracker_name hiptrack --cfg_name hiptrack
@article{zhong2024low,
title={Low-Light Object Tracking: A Benchmark},
author={Zhong, Pengzhi and Guo, Xiaoyu and Huang, Defeng and Peng, Xiaojun and Li, Yian and Zhao, Qijun and Li, Shuiwang},
journal={arXiv preprint arXiv:2408.11463},
year={2024}
}