forked from facebookresearch/mae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_vit.py
186 lines (153 loc) · 4.82 KB
/
models_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
from functools import partial
import timm.models.vision_transformer
import torch
import torch.nn as nn
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
"""Vision Transformer with support for global average pooling"""
def __init__(self, global_pool=False, **kwargs):
super(VisionTransformer, self).__init__(**kwargs)
self.global_pool = global_pool
if self.global_pool:
norm_layer = kwargs["norm_layer"]
embed_dim = kwargs["embed_dim"]
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
outcome = self.fc_norm(x)
else:
x = self.norm(x)
outcome = x[:, 0]
return outcome
class BilateralVisionTransformer(VisionTransformer):
"""TODO"""
def __init__(self, global_pool=False, **kwargs):
output_length = kwargs.pop("output_length")
kwargs["num_classes"] = output_length
super(BilateralVisionTransformer, self).__init__(**kwargs)
self.reset_classifier(output_length)
self.apply(self._init_weights)
def reset_classifier(self, output_length):
self.output_length = output_length
self.head = (
nn.Linear(self.embed_dim * 2, output_length)
if output_length > 0
else nn.Identity()
)
def forward(self, x, contralateral_x, device):
x = x.to(device, non_blocking=False)
# FIXME linear eval for now to save memory
with torch.no_grad():
x = self.forward_features(x)
contralateral_x = contralateral_x.to(device, non_blocking=False)
contralateral_x = self.forward_features(contralateral_x)
x = torch.cat((x, contralateral_x), dim=1)
return self.head(x)
def bilateral_vit_base_patch16_grayscale(**kwargs):
model = BilateralVisionTransformer(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
in_chans=1,
**kwargs,
)
return model
def vit_base_patch16_grayscale(**kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
in_chans=1,
**kwargs,
)
return model
def vit_base_patch16(**kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def bilateral_vit_large_patch16_grayscale(**kwargs):
model = BilateralVisionTransformer(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
in_chans=1,
**kwargs,
)
return model
def vit_large_patch16_grayscale(**kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
in_chans=1,
**kwargs,
)
return model
def vit_large_patch16(**kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def vit_huge_patch14(**kwargs):
model = VisionTransformer(
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model