-
Notifications
You must be signed in to change notification settings - Fork 842
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
docs: Example notebook of VW vs LightGBM #641
Merged
mhamilton723
merged 10 commits into
microsoft:master
from
loomlike:loomlike/vw-regression
Oct 11, 2019
Merged
Changes from 8 commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
f12deee
Example notebook of VW vs LightGBM
loomlike 6d3afc8
Cleanup cells
loomlike f4204b5
Merge branch 'master' into loomlike/vw-regression
eisber c8189ab
Merge branch 'master' into loomlike/vw-regression
mhamilton723 21cc66f
Merge remote-tracking branch 'upstream/master'
loomlike e78120f
Merge branch 'master' into loomlike/vw-regression
loomlike 05ed02f
Address comments
loomlike 7ffee21
Merge branch 'master' into loomlike/vw-regression
mhamilton723 8918b25
Simplify dataframe conversion into array
loomlike fd3c057
Merge branch 'master' into loomlike/vw-regression
imatiach-msft File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
390 changes: 390 additions & 0 deletions
390
notebooks/samples/Regression - Vowpal Wabbit vs. LightGBM vs. Linear Regressor.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,390 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Vowpal Wabbit and LightGBM for a Regression Problem\n", | ||
"\n", | ||
"This notebook shows how to build simple regression models by using [Vowpal Wabbit (VW)](https://github.com/VowpalWabbit/vowpal_wabbit) and [LightGBM](https://github.com/microsoft/LightGBM) with MMLSpark. We also compares the results with [Spark MLlib Linear Regression](https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import math\n", | ||
"from matplotlib.colors import ListedColormap, Normalize\n", | ||
"from matplotlib.cm import get_cmap\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from mmlspark.train import ComputeModelStatistics\n", | ||
"from mmlspark.vw import VowpalWabbitRegressor, VowpalWabbitFeaturizer\n", | ||
"from mmlspark.lightgbm import LightGBMRegressor\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from pyspark.ml.feature import VectorAssembler\n", | ||
"from pyspark.ml.regression import LinearRegression\n", | ||
"import pyspark.sql.types as T\n", | ||
"from sklearn.datasets import load_boston" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Prepare Dataset\n", | ||
"We use [*Boston house price* dataset](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html) because of the ease of access and simplicity which is good to start with. The data was collected in 1978 from Boston area and consists of 506 entries with 14 features including the value of homes. We use `sklearn.datasets` module to download it easily, then split the set into training and testing by 75/25." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"boston = load_boston()\n", | ||
"\n", | ||
"feature_cols = ['f' + str(i) for i in range(boston.data.shape[1])]\n", | ||
"header = ['target'] + feature_cols\n", | ||
"df = spark.createDataFrame(\n", | ||
" pd.DataFrame(data=np.column_stack((boston.target, boston.data)), columns=header)\n", | ||
")\n", | ||
"display(df.limit(10).toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_data, test_data = df.randomSplit([0.75, 0.25], seed=42)\n", | ||
"train_data.cache()\n", | ||
"test_data.cache()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Following is the summary of the training set." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"display(train_data.summary().toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Plot feature distributions over different target values (house prices in our case)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"features = train_data.columns[1:]\n", | ||
"ncols = 5\n", | ||
"nrows = math.ceil(len(features) / ncols)\n", | ||
"\n", | ||
"yy = [r['target'] for r in train_data.select('target').collect()]\n", | ||
"\n", | ||
"f, axes = plt.subplots(nrows, ncols, sharey=True, figsize=(30,10))\n", | ||
"f.tight_layout()\n", | ||
"\n", | ||
"for irow in range(nrows):\n", | ||
" axes[irow][0].set_ylabel('target')\n", | ||
" for icol in range(ncols):\n", | ||
" try:\n", | ||
" feat = features[irow*ncols + icol]\n", | ||
" xx = [r[feat] for r in train_data.select(feat).collect()]\n", | ||
"\n", | ||
" axes[irow][icol].scatter(xx, yy, s=10, alpha=0.25)\n", | ||
" axes[irow][icol].set_xlabel(feat)\n", | ||
" axes[irow][icol].get_yaxis().set_ticks([])\n", | ||
" except IndexError:\n", | ||
" f.delaxes(axes[irow][icol])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Baseline - Spark MLlib Linear Regressor\n", | ||
"\n", | ||
"First, we set a baseline performance by using Linear Regressor in Spark MLlib." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"featurizer = VectorAssembler(\n", | ||
" inputCols=feature_cols,\n", | ||
" outputCol='features'\n", | ||
")\n", | ||
"lr_train_data = featurizer.transform(train_data)['target', 'features']\n", | ||
"lr_test_data = featurizer.transform(test_data)['target', 'features']\n", | ||
"display(lr_train_data.limit(10).toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# By default, `maxIter` is 100. Other params you may want to change include: `regParam`, `elasticNetParam`, etc.\n", | ||
"lr = LinearRegression(\n", | ||
" labelCol='target',\n", | ||
")\n", | ||
"\n", | ||
"lr_model = lr.fit(lr_train_data)\n", | ||
"lr_predictions = lr_model.transform(lr_test_data)\n", | ||
"\n", | ||
"display(lr_predictions.limit(10).toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We evaluate the prediction result by using `mmlspark.train.ComputeModelStatistics` which returns four metrics:\n", | ||
"* [MSE (Mean Squared Error)](https://en.wikipedia.org/wiki/Mean_squared_error)\n", | ||
"* [RMSE (Root Mean Squared Error)](https://en.wikipedia.org/wiki/Root-mean-square_deviation) = sqrt(MSE)\n", | ||
"* [R quared](https://en.wikipedia.org/wiki/Coefficient_of_determination)\n", | ||
"* [MAE (Mean Absolute Error)](https://en.wikipedia.org/wiki/Mean_absolute_error)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"metrics = ComputeModelStatistics(\n", | ||
" evaluationMetric='regression',\n", | ||
" labelCol='target',\n", | ||
" scoresCol='prediction'\n", | ||
").transform(lr_predictions)\n", | ||
"\n", | ||
"results = metrics.toPandas()\n", | ||
"results.insert(0, 'model', ['Spark MLlib - Linear Regression'])\n", | ||
"display(results)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Vowpal Wabbit" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Perform VW-style feature hashing. Many types (numbers, string, bool, map of string to (number, string)) are supported." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"vw_featurizer = VowpalWabbitFeaturizer(\n", | ||
" inputCols=feature_cols,\n", | ||
" outputCol='features',\n", | ||
")\n", | ||
"vw_train_data = vw_featurizer.transform(train_data)['target', 'features']\n", | ||
"vw_test_data = vw_featurizer.transform(test_data)['target', 'features']\n", | ||
"display(vw_train_data.limit(10).toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"See [VW wiki](https://github.com/vowpalWabbit/vowpal_wabbit/wiki/Command-Line-Arguments) for command line arguments." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Use the same number of iterations as Spark MLlib's Linear Regression (=100)\n", | ||
"args = \"--holdout_off --loss_function quantile -l 7 -q :: --power_t 0.3\"\n", | ||
"vwr = VowpalWabbitRegressor(\n", | ||
" labelCol='target',\n", | ||
" args=args,\n", | ||
" numPasses=100,\n", | ||
")\n", | ||
"\n", | ||
"# To reduce number of partitions (which will effect performance), use `vw_train_data.coalesce(1)`\n", | ||
"vw_model = vwr.fit(vw_train_data.coalesce(1))\n", | ||
"vw_predictions = vw_model.transform(vw_test_data)\n", | ||
"\n", | ||
"display(vw_predictions.limit(10).toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"metrics = ComputeModelStatistics(\n", | ||
" evaluationMetric='regression',\n", | ||
" labelCol='target',\n", | ||
" scoresCol='prediction'\n", | ||
").transform(vw_predictions)\n", | ||
"\n", | ||
"vw_result = metrics.toPandas()\n", | ||
"vw_result.insert(0, 'model', ['Vowpal Wabbit'])\n", | ||
"results = results.append(\n", | ||
" vw_result,\n", | ||
" ignore_index=True\n", | ||
")\n", | ||
"display(results)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## LightGBM" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"lgr = LightGBMRegressor(\n", | ||
" objective='quantile',\n", | ||
" alpha=0.2,\n", | ||
" learningRate=0.3,\n", | ||
" numLeaves=31,\n", | ||
" labelCol='target',\n", | ||
" numIterations=100,\n", | ||
")\n", | ||
"\n", | ||
"lg_model = lgr.fit(lr_train_data)\n", | ||
"lg_predictions = lg_model.transform(lr_test_data)\n", | ||
"\n", | ||
"display(lg_predictions.limit(10).toPandas())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"metrics = ComputeModelStatistics(\n", | ||
" evaluationMetric='regression',\n", | ||
" labelCol='target',\n", | ||
" scoresCol='prediction'\n", | ||
").transform(lg_predictions)\n", | ||
"\n", | ||
"lg_result = metrics.toPandas()\n", | ||
"lg_result.insert(0, 'model', ['LightGBM'])\n", | ||
"results = results.append(\n", | ||
" lg_result,\n", | ||
" ignore_index=True\n", | ||
")\n", | ||
"display(results)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Following figure shows the actual-vs.-prediction graphs of the results:\n", | ||
"\n", | ||
"<img width=\"1102\" alt=\"lr-vw-lg\" src=\"https://user-images.githubusercontent.com/42475935/64071975-4c3e9600-cc54-11e9-8b1f-9a1ee300f445.png\">" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cmap = get_cmap('YlOrRd')\n", | ||
"\n", | ||
"target = np.array([r['target'] for r in test_data.select('target').collect()])\n", | ||
"model_preds = [\n", | ||
" (\"Spark MLlib Linear Regression\", lr_predictions),\n", | ||
" (\"Vowpal Wabbit\", vw_predictions),\n", | ||
" (\"LightGBM\", lg_predictions)\n", | ||
"]\n", | ||
"\n", | ||
"f, axes = plt.subplots(1, len(model_preds), sharey=True, figsize=(18, 6))\n", | ||
"f.tight_layout()\n", | ||
"\n", | ||
"for i, (model_name, preds) in enumerate(model_preds):\n", | ||
" preds = np.array([r['prediction'] for r in preds.select('prediction').collect()])\n", | ||
" err = np.absolute(preds - target)\n", | ||
"\n", | ||
" norm = Normalize()\n", | ||
" clrs = cmap(np.asarray(norm(err)))[:, :-1]\n", | ||
" axes[i].scatter(preds, target, s=60, c=clrs, edgecolors='#888888', alpha=0.75)\n", | ||
" axes[i].plot((0, 60), (0, 60), linestyle='--', color='#888888')\n", | ||
" axes[i].set_xlabel('Predicted values')\n", | ||
" if i ==0:\n", | ||
" axes[i].set_ylabel('Actual values')\n", | ||
" axes[i].set_title(model_name)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.8" | ||
}, | ||
"name": "mmlspark example - regression", | ||
"notebookId": 1395284431467721 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
its much more efficient to select the columns in spark, then call
.toPandas
on the resulting dataframe. This will then make it in a nice form for plotting