Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add cardinality and size related properties to Tunables #698

Merged
merged 7 commits into from
Mar 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
#
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
#
"""
Unit tests for checking tunable size properties.
"""

import numpy as np
import pytest

from mlos_bench.tunables.tunable import Tunable


# Note: these test do *not* check the ConfigSpace conversions for those same Tunables.
# That is checked indirectly via grid_search_optimizer_test.py

def test_tunable_int_size_props() -> None:
"""Test tunable int size properties"""
tunable = Tunable(
name="test",
config={
"type": "int",
"range": [1, 5],
"default": 3,
})
assert tunable.span == 4
assert tunable.cardinality == 5
expected = [1, 2, 3, 4, 5]
assert list(tunable.quantized_values or []) == expected
assert list(tunable.values or []) == expected


def test_tunable_float_size_props() -> None:
"""Test tunable float size properties"""
tunable = Tunable(
name="test",
config={
"type": "float",
"range": [1.5, 5],
"default": 3,
})
assert tunable.span == 3.5
assert tunable.cardinality == np.inf
assert tunable.quantized_values is None
assert tunable.values is None


def test_tunable_categorical_size_props() -> None:
"""Test tunable categorical size properties"""
tunable = Tunable(
name="test",
config={
"type": "categorical",
"values": ["a", "b", "c"],
"default": "a",
})
with pytest.raises(AssertionError):
_ = tunable.span
assert tunable.cardinality == 3
assert tunable.values == ["a", "b", "c"]
with pytest.raises(AssertionError):
_ = tunable.quantized_values


def test_tunable_quantized_int_size_props() -> None:
"""Test quantized tunable int size properties"""
tunable = Tunable(
name="test",
config={
"type": "int",
"range": [100, 1000],
"default": 100,
"quantization": 100
})
assert tunable.span == 900
assert tunable.cardinality == 10
expected = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
assert list(tunable.quantized_values or []) == expected
assert list(tunable.values or []) == expected


def test_tunable_quantized_float_size_props() -> None:
"""Test quantized tunable float size properties"""
tunable = Tunable(
name="test",
config={
"type": "float",
"range": [0, 1],
"default": 0,
"quantization": .1
})
assert tunable.span == 1
assert tunable.cardinality == 11
expected = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
assert pytest.approx(list(tunable.quantized_values or []), 0.0001) == expected
assert pytest.approx(list(tunable.values or []), 0.0001) == expected
86 changes: 82 additions & 4 deletions mlos_bench/mlos_bench/tunables/tunable.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,9 @@
import collections
import logging

from typing import Any, Dict, List, Literal, Optional, Sequence, Tuple, Type, TypedDict, Union
from typing import Any, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, Type, TypedDict, Union

import numpy as np

_LOG = logging.getLogger(__name__)

Expand Down Expand Up @@ -370,6 +372,7 @@ def is_valid(self, value: TunableValue) -> bool:
is_valid : bool
True if the value is valid, False otherwise.
"""
# FIXME: quantization check?
if self.is_categorical and self._values:
return value in self._values
elif self.is_numerical and self._range:
Expand Down Expand Up @@ -563,19 +566,79 @@ def range(self) -> Union[Tuple[int, int], Tuple[float, float]]:
assert self._range is not None
return self._range

@property
def span(self) -> Union[int, float]:
"""
Gets the span of the range.

Note: this does not take quantization into account.

Returns
-------
Union[int, float]
(max - min) for numerical tunables.
"""
num_range = self.range
return num_range[1] - num_range[0]

@property
def quantization(self) -> Optional[Union[int, float]]:
"""
Get the number of quantization points, if specified.
Get the quantization factor, if specified.

Returns
-------
quantization : int, float, None
Number of quantization points or None.
The quantization factor, or None.
"""
assert self.is_numerical
if self.is_categorical:
return None
return self._quantization

@property
def quantized_values(self) -> Optional[Union[Iterable[int], Iterable[float]]]:
"""
Get a sequence of quanitized values for this tunable.

Returns
-------
Optional[Union[Iterable[int], Iterable[float]]]
If the Tunable is quantizable, returns a sequence of those elements,
else None (e.g., for unquantized float type tunables).
"""
num_range = self.range
if self.type == "float":
if not self._quantization:
return None
# Be sure to return python types instead of numpy types.
cardinality = self.cardinality
assert isinstance(cardinality, int)
return (float(x) for x in np.linspace(start=num_range[0],
stop=num_range[1],
num=cardinality,
endpoint=True))
assert self.type == "int", f"Unhandled tunable type: {self}"
return range(int(num_range[0]), int(num_range[1]) + 1, int(self._quantization or 1))

@property
def cardinality(self) -> Union[int, float]:
"""
Gets the cardinality of elements in this tunable, or else infinity.

If the tunable has quantization set, this

Returns
-------
cardinality : int, float
Either the number of points in the tunable or else infinity.
"""
if self.is_categorical:
return len(self.categories)
if not self.quantization and self.type == "float":
return np.inf
q_factor = self.quantization or 1
return int(self.span / q_factor) + 1

@property
def is_log(self) -> Optional[bool]:
"""
Expand Down Expand Up @@ -629,6 +692,21 @@ def categories(self) -> List[Optional[str]]:
assert self._values is not None
return self._values

@property
def values(self) -> Optional[Union[Iterable[Optional[str]], Iterable[int], Iterable[float]]]:
"""
Gets the categories or quantized values for this tunable.

Returns
-------
Optional[Union[Iterable[Optional[str]], Iterable[int], Iterable[float]]]
Categories or quantized values.
"""
if self.is_categorical:
return self.categories
assert self.is_numerical
return self.quantized_values

@property
def meta(self) -> Dict[str, Any]:
"""
Expand Down
Loading