Skip to content
/ index Public

SOTA Open-Source Browser Agent for autonomously performing complex tasks on the web

License

Notifications You must be signed in to change notification settings

lmnr-ai/index

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Static Badge X (formerly Twitter) Follow Static Badge

Index

Index is a state-of-the-art open-source browser agent that autonomously executes complex tasks on the web.

prompt: go to ycombinator.com. summarize first 3 companies in the W25 batch and make new spreadsheet in google sheets.

local_agent_spreadsheet_demo.mp4

Index API

Index API is available as hosted api on the Laminar platform. Index API manages remote browser sessions and agent infrastructure. Index API is the best way to run AI browser automation in production. To get started, sign up and create project API key.

Install Laminar

pip install lmnr

Use Index via API

from lmnr import Laminar, AsyncLaminarClient
# you can also set LMNR_PROJECT_API_KEY environment variable

# Initialize tracing
Laminar.initialize(project_api_key="your_api_key")

# Initialize the client
client = AsyncLaminarClient(api_key="your_api_key")

async def main():

    # Run a task
    response = await client.agent.run(
        prompt="Navigate to news.ycombinator.com, find a post about AI, and summarize it"
    )

    # Print the result
    print(response.result)
    
if __name__ == "__main__":
    asyncio.run(main())

When you call Index via API, you automatically get full browser agent observability on Laminar platform. Learn more about Index browser observability.

Local Quick Start

Install dependencies

pip install lmnr-index

# Install playwright
playwright install chromium

Run the agent

import asyncio
from index import Agent, AnthropicProvider

async def main():
    # Initialize the LLM provider
    llm = AnthropicProvider(
            model="claude-3-7-sonnet-20250219",
            enable_thinking=True, 
            thinking_token_budget=2048)
    
    # Create an agent with the LLM
    agent = Agent(llm=llm)
    
    # Run the agent with a task
    output = await agent.run(
        prompt="Navigate to news.ycombinator.com, find a post about AI, and summarize it"
    )
    
    # Print the result
    print(output.result)
    
if __name__ == "__main__":
    asyncio.run(main())

Stream the agent's output

from index import Agent, AnthropicProvider

agent = Agent(llm=AnthropicProvider(model="claude-3-7-sonnet-20250219"))    

# Stream the agent's output
async for chunk in agent.run_stream(
    prompt="Navigate to news.ycombinator.com, find a post about AI, and summarize it"):
    print(chunk)

Enable browser agent observability

To trace Index agent's actions and record browser session you simply need to initialize Laminar tracing before running the agent.

from lmnr import Laminar

Laminar.initialize(project_api_key="your_api_key")

Then you will get full observability on the agent's actions synced with the browser session in the Laminar platform.

Index observability

Run with remote CDP url

import asyncio
from index import Agent, AnthropicProvider, BrowserConfig

async def main():
    # Configure browser to connect to an existing Chrome DevTools Protocol endpoint
    browser_config = BrowserConfig(
        cdp_url="<cdp_url>"
    )
    
    # Initialize the LLM provider
    llm = AnthropicProvider(model="claude-3-7-sonnet-20250219", enable_thinking=True, thinking_token_budget=2048)
    
    # Create an agent with the LLM and browser
    agent = Agent(llm=llm, browser_config=browser_config)
    
    # Run the agent with a task
    output = await agent.run(
        prompt="Navigate to news.ycombinator.com and find the top story"
    )
    
    # Print the result
    print(output.result)
    
if __name__ == "__main__":
    asyncio.run(main())

Customize browser window size

import asyncio
from index import Agent, AnthropicProvider, BrowserConfig

async def main():
    # Configure browser with custom viewport size
    browser_config = BrowserConfig(
        viewport_size={"width": 1200, "height": 900}
    )
    
    # Initialize the LLM provider
    llm = AnthropicProvider(model="claude-3-7-sonnet-20250219")
    
    # Create an agent with the LLM and browser
    agent = Agent(llm=llm, browser_config=browser_config)
    
    # Run the agent with a task
    output = await agent.run(
        "Navigate to a responsive website and capture how it looks in full HD resolution"
    )
    
    # Print the result
    print(output.result)
    
if __name__ == "__main__":
    asyncio.run(main())

Made with ❤️ by the Laminar team