-
Notifications
You must be signed in to change notification settings - Fork 12.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][sparse] avoid tensor to memref conversion in sparse tensor rewri… #69362
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aartbik
approved these changes
Oct 17, 2023
@llvm/pr-subscribers-mlir-sparse @llvm/pr-subscribers-mlir Author: Peiming Liu (PeimingLiu) Changes…ting rules. Patch is 27.11 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/69362.diff 3 Files Affected:
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
index 1bfee3aa1d7ee8e..e50b14975e83d63 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
@@ -829,47 +829,40 @@ struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> {
}
};
+// A trivial wrapper to help generate different operations for dense/sparse
+// tensors.
struct TensorLike {
TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt,
- ValueRange sizes)
- : isSparse(rtt.getEncoding() != nullptr) {
+ ValueRange sizes) {
SmallVector<Value> dynSzs;
getDynamicSizes(rtt, sizes, dynSzs);
- if (isSparse)
- val = builder.create<AllocTensorOp>(loc, rtt, dynSzs);
- else
- val = allocDenseTensor(builder, loc, rtt, sizes);
- };
-
- void insertOrStore(OpBuilder &builder, Location loc, Value v,
- ValueRange crds) {
- if (isSparse)
- val = builder.create<InsertOp>(loc, v, val, crds);
- else
- builder.create<memref::StoreOp>(loc, v, val, crds);
+ val = builder.create<AllocTensorOp>(loc, rtt, dynSzs);
+ if (!isSparse()) {
+ Value c0 = constantZero(builder, loc, rtt.getElementType());
+ val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0);
+ }
}
- Value getSSA() const {
- // We don't need to maintain the SSA chain for a memref value.
- return isSparse ? val : nullptr;
+ void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) {
+ // TODO: Unify these two.
+ if (isSparse())
+ val = builder.create<sparse_tensor::InsertOp>(loc, v, val, crds);
+ else
+ val = builder.create<tensor::InsertOp>(loc, v, val, crds);
}
Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const {
- if (isSparse)
+ if (isSparse())
return builder.create<LoadOp>(loc, val, true);
- return builder.create<bufferization::ToTensorOp>(loc, rtp, val);
+ return val;
}
- void updateSSA(Value v) {
- // Dense memref is a non-SSA value.
- assert(isSparse);
- val = v;
+ bool isSparse() const {
+ return getSparseTensorEncoding(val.getType()) != nullptr;
}
-private:
- bool isSparse;
- Value val; // either a memref (for dense tensor) or a sparse tensor.
+ Value val;
};
struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
@@ -901,14 +894,14 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes);
Value offset = constantIndex(rewriter, loc, 0);
- Value iterArg = dstBuf.getSSA();
+ Value iterArg = dstBuf.val;
ForeachOp foreachOp;
for (Value input : op.getInputs()) {
// Builds a for op for each input tensor to append new values into the
// output tensor.
foreachOp = rewriter.create<ForeachOp>(
- loc, input, iterArg ? ValueRange{iterArg} : ValueRange{},
+ loc, input, iterArg,
[&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
ValueRange reduc) {
SmallVector<Value> dstLcvs(dstTp.getLvlRank());
@@ -920,32 +913,26 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
// FIXME: `toStoredDim` is deprecated
dstLcvs[toStoredDim(dstTp.getEncoding(), d)] = crd;
}
-
- if (!reduc.empty())
- dstBuf.updateSSA(reduc.front());
-
+ // Enters foreach, updates the SSA chain.
+ dstBuf.val = reduc.front();
if (!dstTp.isAllDense()) {
Value cond = genIsNonzero(builder, loc, v);
auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
/*else*/ true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
- builder.create<scf::YieldOp>(loc, dstBuf.getSSA());
+ builder.create<scf::YieldOp>(loc, dstBuf.val);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
- dstBuf.insertOrStore(builder, loc, v, dstLcvs);
- builder.create<scf::YieldOp>(loc, dstBuf.getSSA());
+ dstBuf.insert(builder, loc, v, dstLcvs);
+ builder.create<scf::YieldOp>(loc, dstBuf.val);
// Exits the ifOp, update the sparse tensor SSA value.
builder.setInsertionPointAfter(ifOp);
- assert(!reduc.empty());
- dstBuf.updateSSA(ifOp.getResult(0));
+ dstBuf.val = ifOp.getResult(0);
} else {
- dstBuf.insertOrStore(builder, loc, v, dstLcvs);
+ dstBuf.insert(builder, loc, v, dstLcvs);
}
- if (reduc.empty())
- builder.create<sparse_tensor::YieldOp>(loc);
- else
- builder.create<sparse_tensor::YieldOp>(loc, dstBuf.getSSA());
+ builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
});
// Accumulates the offset. Note that only static-shaped inputs are allowed
// by concatenate op verifier, which saves us from computing the offset
@@ -955,15 +942,11 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
offset = rewriter.create<arith::AddIOp>(
loc, offset, constantIndex(rewriter, loc, *sh));
- if (!foreachOp.getResults().empty()) {
- iterArg = foreachOp.getResult(0);
- dstBuf.updateSSA(iterArg);
- }
+ iterArg = foreachOp.getResult(0);
+ dstBuf.val = iterArg;
}
- if (!foreachOp.getResults().empty())
- dstBuf.updateSSA(iterArg);
-
+ dstBuf.val = iterArg;
Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType());
rewriter.replaceOp(op, ret);
return success();
@@ -1010,15 +993,12 @@ struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> {
ValueRange vs;
TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes);
- Value iterArg = dstBuf.getSSA();
auto foreachOp = rewriter.create<ForeachOp>(
- loc, src, iterArg ? ValueRange{iterArg} : ValueRange{}, foreachOrder,
+ loc, src, dstBuf.val, foreachOrder,
[&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
ValueRange reduc) {
// Enters the loop, update the SSA value for insertion chain.
- if (!reduc.empty())
- dstBuf.updateSSA(reduc.front());
-
+ dstBuf.val = reduc.front();
const Dimension dimRank = dstStt.getDimRank();
const Level lvlRank = dstStt.getLvlRank();
SmallVector<Value> lcvs(lvlRank);
@@ -1028,34 +1008,29 @@ struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> {
}
if (!skipZeroCheck) {
- assert(!reduc.empty());
Value cond = genIsNonzero(builder, loc, v);
auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
/*else*/ true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
- builder.create<scf::YieldOp>(loc, dstBuf.getSSA());
+ builder.create<scf::YieldOp>(loc, dstBuf.val);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
- dstBuf.insertOrStore(builder, loc, v, lcvs);
- builder.create<scf::YieldOp>(loc, dstBuf.getSSA());
+ dstBuf.insert(builder, loc, v, lcvs);
+ builder.create<scf::YieldOp>(loc, dstBuf.val);
// Exits the ifOp, update the sparse tensor SSA value.
builder.setInsertionPointAfter(ifOp);
- dstBuf.updateSSA(ifOp.getResult(0));
+ dstBuf.val = ifOp.getResult(0);
} else {
- dstBuf.insertOrStore(builder, loc, v, lcvs);
+ dstBuf.insert(builder, loc, v, lcvs);
}
- if (reduc.empty())
- builder.create<sparse_tensor::YieldOp>(loc);
- else
- builder.create<sparse_tensor::YieldOp>(loc, dstBuf.getSSA());
+ builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
});
rewriter.setInsertionPointAfter(foreachOp);
// Exits the for loop, links the SSA chain.
- if (!foreachOp.getResults().empty())
- dstBuf.updateSSA(foreachOp.getResult(0));
+ dstBuf.val = foreachOp.getResult(0);
Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType());
rewriter.replaceOp(op, ret);
diff --git a/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir b/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir
index c22f051a0d5854d..e2dcb068e11851e 100644
--- a/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir
+++ b/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir
@@ -14,11 +14,10 @@
// CHECK-LABEL: func.func @sparse_convert_1d
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_1d(%arg0: tensor<13xi32, #SparseVector>) -> tensor<13xi32> {
%0 = sparse_tensor.convert %arg0 : tensor<13xi32, #SparseVector> to tensor<13xi32>
return %0 : tensor<13xi32>
@@ -26,11 +25,10 @@ func.func @sparse_convert_1d(%arg0: tensor<13xi32, #SparseVector>) -> tensor<13x
// CHECK-LABEL: func.func @sparse_convert_1d_dyn
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_1d_dyn(%arg0: tensor<?xi32, #SparseVector>) -> tensor<?xi32> {
%0 = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
return %0 : tensor<?xi32>
@@ -38,11 +36,10 @@ func.func @sparse_convert_1d_dyn(%arg0: tensor<?xi32, #SparseVector>) -> tensor<
// CHECK-LABEL: func.func @sparse_convert_2d
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_2d(%arg0: tensor<2x4xf64, #SparseMatrix>) -> tensor<2x4xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<2x4xf64, #SparseMatrix> to tensor<2x4xf64>
return %0 : tensor<2x4xf64>
@@ -50,11 +47,10 @@ func.func @sparse_convert_2d(%arg0: tensor<2x4xf64, #SparseMatrix>) -> tensor<2x
// CHECK-LABEL: func.func @sparse_convert_2d_dyn
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_2d_dyn0(%arg0: tensor<?x4xf64, #SparseMatrix>) -> tensor<?x4xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<?x4xf64, #SparseMatrix> to tensor<?x4xf64>
return %0 : tensor<?x4xf64>
@@ -62,11 +58,10 @@ func.func @sparse_convert_2d_dyn0(%arg0: tensor<?x4xf64, #SparseMatrix>) -> tens
// CHECK-LABEL: func.func @sparse_convert_2d_dyn1
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_2d_dyn1(%arg0: tensor<2x?xf64, #SparseMatrix>) -> tensor<2x?xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<2x?xf64, #SparseMatrix> to tensor<2x?xf64>
return %0 : tensor<2x?xf64>
@@ -74,11 +69,10 @@ func.func @sparse_convert_2d_dyn1(%arg0: tensor<2x?xf64, #SparseMatrix>) -> tens
// CHECK-LABEL: func.func @sparse_convert_2d_dyn2
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_2d_dyn2(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x?xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<?x?xf64, #SparseMatrix> to tensor<?x?xf64>
return %0 : tensor<?x?xf64>
@@ -86,11 +80,10 @@ func.func @sparse_convert_2d_dyn2(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tens
// CHECK-LABEL: func.func @sparse_convert_3d
// CHECK-NOT: sparse_tensor.reorder_coo
-// CHECK: memref.alloc
+// CHECK: bufferization.alloc_tensor
// CHECK: linalg.fill
// CHECK: sparse_tensor.foreach
-// CHECK: memref.store
-// CHECK: bufferization.to_tensor
+// CHECK: tensor.insert
func.func @sparse_convert_3d(%arg0: tensor<2x3x4xf64, #SparseTensor>) -> tensor<2x3x4xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<2x3x4xf64, #SparseTensor> to tensor<2x3x4xf64>
return %0 : tensor<2x3x4xf64>
diff --git a/mlir/test/Dialect/SparseTensor/sparse_concat.mlir b/mlir/test/Dialect/SparseTensor/sparse_concat.mlir
index bdfab54dc6daeb5..f3d3dd28563e891 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_concat.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_concat.mlir
@@ -176,77 +176,83 @@ func.func @concat_sparse_sparse_dynamic(%arg0: tensor<2x4xf64, #DCSR>,
return %0 : tensor<?x?xf64, #DCSR>
}
-// CHECK-LABEL: @concat_sparse_sparse_dense(
-// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<2x4xf64, #sparse_tensor
-// CHECK-SAME: %[[TMP_arg1:.*]]: tensor<3x4xf64, #sparse_tensor
-// CHECK-SAME: %[[TMP_arg2:.*]]: tensor<4x4xf64, #sparse_tensor
-// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
-// CHECK-DAG: %[[TMP_c5:.*]] = arith.constant 5 : index
-// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
-// CHECK-DAG: %[[TMP_c9:.*]] = arith.constant 9 : index
-// CHECK-DAG: %[[TMP_c4:.*]] = arith.constant 4 : index
-// CHECK-DAG: %[[TMP_d0:.*]] = arith.constant 0.000000e+00 : f64
-// CHECK: %[[A:.*]] = memref.alloc(%[[TMP_c9]], %[[TMP_c4]]) : memref<?x?xf64>
-// CHECK: linalg.fill ins(%[[TMP_d0]] : f64) outs(%[[A]] : memref<?x?xf64>)
-// CHECK: %[[TMP_1:.*]] = sparse_tensor.positions %[[TMP_arg0]] {level = 0 : index} : tensor<2x4xf64, #sparse_tensor
-// CHECK: %[[TMP_2:.*]] = sparse_tensor.coordinates %[[TMP_arg0]] {level = 0 : index} : tensor<2x4xf64, #sparse_tensor
-// CHECK: %[[TMP_3:.*]] = sparse_tensor.positions %[[TMP_arg0]] {level = 1 : index} : tensor<2x4xf64, #sparse_tensor
-// CHECK: %[[TMP_4:.*]] = sparse_tensor.coordinates %[[TMP_arg0]] {level = 1 : index} : tensor<2x4xf64, #sparse_tensor
-// CHECK: %[[TMP_5:.*]] = sparse_tensor.values %[[TMP_arg0]] : tensor<2x4xf64, #sparse_tensor
-// CHECK: %[[TMP_6:.*]] = memref.load %[[TMP_1]][%[[TMP_c0]]] : memref<?xindex>
-// CHECK: %[[TMP_7:.*]] = memref.load %[[TMP_1]][%[[TMP_c1]]] : memref<?xindex>
-// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_6]] to %[[TMP_7]] step %[[TMP_c1]]
-// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_2]][%[[TMP_arg3]]] : memref<?xindex>
-// CHECK-DAG: %[[TMP_25:.*]] = memref.load %[[TMP_3]][%[[TMP_arg3]]] : memref<?xindex>
-// CHECK-DAG: %[[TMP_24:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
-// CHECK: %[[TMP_26:.*]] = memref.load %[[TMP_3]][%[[TMP_24]]] : memref<?xindex>
-// CHECK: scf.for %[[TMP_arg4:.*]] = %[[TMP_25]] to %[[TMP_26]] step %[[TMP_c1]]
-// CHECK: %[[TMP_27:.*]] = memref.load %[[TMP_4]][%[[TMP_arg4]]] : memref<?xindex>
-// CHECK: %[[TMP_28:.*]] = memref.load %[[TMP_5]][%[[TMP_arg4]]] : memref<?xf64>
-// CHECK: memref.store %[[TMP_28]], %[[A]]{{\[}}%[[TMP_23]], %[[TMP_27]]] : memref<?x?xf64>
-// CHECK: }
-// CHECK: }
-// CHECK: %[[TMP_8:.*]] = sparse_tensor.positions %[[TMP_arg1]] {level = 0 : index} : tensor<3x4xf64, #sparse_tensor
-// CHECK: %[[TMP_9:.*]] = sparse_tensor.coordinates %[[TMP_arg1]] {level = 0 : index} : tensor<3x4xf64, #sparse_tensor
-// CHECK: %[[TMP_10:.*]] = sparse_tensor.positions %[[TMP_arg1]] {level = 1 : index} : tensor<3x4xf64, #sparse_tensor
-// CHECK: %[[TMP_11:.*]] = sparse_tensor.coordinates %[[TMP_arg1]] {level = 1 : index} : tensor<3x4xf64, #sparse_tensor
-// CHECK: %[[TMP_12:.*]] = sparse_tensor.values %[[TMP_arg1]] : tensor<3x4xf64, #sparse_tensor
-// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_8]][%[[TMP_c0]]] : memref<?xindex>
-// CHECK: %[[TMP_14:.*]] = memref.load %[[TMP_8]][%[[TMP_c1]]] : memref<?xindex>
-// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_13]] to %[[TMP_14]] step %[[TMP_c1]]
-// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_9]][%[[TMP_arg3]]] : memref<?xindex>
-// CHECK-DAG: %[[TMP_25:.*]] = memref.load %[[TMP_10]][%[[TMP_arg3]]] : memref<?xindex>
-// CHECK-DAG: %[[TMP_24:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
-// CHECK: %[[TMP_26:.*]] = memref.load %[[TMP_10]][%[[TMP_24]]] : memref<?xindex>
-// CHECK: scf.for %[[TMP_arg4:.*]] = %[[TMP_25]] to %[[TMP_26]] step %[[TMP_c1]]
-// CHECK: %[[TMP_27:.*]] = memref.load %[[TMP_11]][%[[TMP_arg4]]] : memref<?xindex>
-// CHECK: %[[TMP_28:.*]] = memref.load %[[TMP_12]][%[[TMP_arg4]]] : memref<?xf64>
-// CHECK: %[[TMP_29:.*]] = arith.addi %[[TMP_23]], %[[TMP_c2]] : index
-// CHECK: memref.store %[[TMP_28]], %[[A]]{{\[}}%[[TMP_29]], %[[TMP_27]]] : memref<?x?xf64>
-// CHECK: }
-// CHECK: }
-// CHECK: %[[TMP_15:.*]] = sparse_tensor.positions %[[TMP_arg2]] {level = 0 : index} : tensor<4x4xf64, #sparse_tensor
-// CHECK: %[[TMP_16:.*]] = sparse_tensor.coordinates %[[TMP_arg2]] {level = 0 : index} : tensor<4x4xf64, #sparse_tensor
-// CHECK: %[[TMP_17:.*]] = sparse_tensor.positions %[[TMP_arg2]] {level = 1 : index} : tensor<4x4xf64, #sparse_tensor
-// CHECK: %[[TMP_18:.*]] = sparse_tensor.coordinates %[[TMP_arg2]] {level = 1 : index} : tensor<4x4xf64, #sparse_tensor
-// CHECK: %[[TMP_19:.*]] = sparse_tensor.values %[[TMP_arg2]] : tensor<4x4xf64, #sparse_tensor
-// CHECK: %[[TMP_20:.*]] = memref.load %[[TMP_15]][%[[TMP_c0]]] : memref<?xindex>
-// CHECK: %[[TMP_21:.*]] = memref.load %[[TMP_15]][%[[TMP_c1]]] : memref<?xindex>
-// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_20]] to %[[TMP_21]] step %[[TMP_c1]]
-// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_16]][%[[TMP_arg3]]] : memref<?xindex>
-// CHECK: %[[TMP_25:.*]] = memref.load %[[TMP_17]][%[[TMP_arg3]]] : memref<?xindex>
-// CHECK: %[[TMP_24:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
-// CHECK: %[[TMP_26:.*]] = memref.load %[[TMP_17]][%[[TMP_24]]] : memref<?xindex>
-// CHECK: scf.for %[[TMP_arg4:.*]] = %[[TMP_25]] to %[[TMP_26]] step %[[TMP_c1]]
-// CHECK: %[[TMP_27:.*]] = memref.load %[[TMP_18]][%[[TMP_arg4]]] : memref<?xindex>
-// CHECK: %[[TMP_28:.*]] = memref.load %[[TMP_19]][%[[TMP_arg4]]] : memref<?xf64>
-// CHECK: %[[TMP_29:.*]] = arith.addi %[[TMP_23]], %[[TMP_c5]] : index
-// CHECK: memref.store %[[TMP_28]], %[[A]]{{\[}}%[[TMP_29]], %[[TMP_27]]] : memref<?x?xf64>
-// CHECK: }
-// CHECK: }
-// CHECK: %[[R:.*]] = bufferization.to_tensor %[[A]] : memref<?x?xf64>
-// CHECK: return %[[R]] : tensor<?x?xf64>
+// CHECK-LABEL: func.func @concat_sparse_sparse_dense(
+// CHECK-SAME: %[[VAL_0:.*]]: tensor<2x4xf64, #sparse_tensor
+// CHECK-SAME: %[[VAL_1:.*]]: tensor<3x4xf64, #sparse_tensor
+// CHECK-SAME: %[[VAL_2...
[truncated]
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
…ting rules.