This is the official code for SIGIR 2024 paper: 'Multi-intent-aware Session-based Recommendation'.
We implemented our model based on the recommendation framework library RecBole v1.2.0 and CORE.
you can use the following command to install the environment
conda create -n miasrec python=3.8
conda activate miasrec
pip install -r requirements.txt
make dataset
folder and unzip dataset
folder
diginetica
, retailrocket
, yoochoose
, dressipi
, tmall
, lastfm
)
for DATASET in diginetica retailrocket yoochoose dressipi tmall lastfm
do
unzip $DATASET.zip -d dataset/$DATASET
done
python main.py --model miasrec --dataset diginetica --beta_logit 0.9
python main.py --model miasrec --dataset retailrocket --beta_logit 0.8
python main.py --model miasrec --dataset yoochoose --beta_logit 0.7
python main.py --model miasrec --dataset tmall --beta_logit 0.9
python main.py --model miasrec --dataset dressipi --beta_logit 0.9
python main.py --model miasrec --dataset lastfm --beta_logit 0.9
Please cite our paper:
@inproceedings{sigir/0001KCL24,
author = {Minjin Choi and
Hye{-}young Kim and
Hyunsouk Cho and
Jongwuk Lee},
title = {Multi-intent-aware Session-based Recommendation},
booktitle = {Proceedings of the 47th International {ACM} {SIGIR} Conference on
Research and Development in Information Retrieval, {SIGIR} 2024, Washington
DC, USA, July 14-18, 2024},
pages = {2532--2536},
publisher = {{ACM}},
year = {2024},
doi = {10.1145/3626772.3657928},
}