-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathTestFmpcOscillator.cpp
272 lines (233 loc) · 10.4 KB
/
TestFmpcOscillator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* Author: Masaki Murooka */
#include <gtest/gtest.h>
#include <fstream>
#include <iostream>
#include <nmpc_fmpc/FmpcSolver.h>
using Variable = typename nmpc_fmpc::FmpcSolver<2, 1, 3>::Variable;
using Status = typename nmpc_fmpc::FmpcSolver<2, 1, 3>::Status;
/** \brief FMPC problem for Van der Pol oscillator.
See https://web.casadi.org/docs/#a-simple-test-problem
*/
class FmpcProblemOscillator : public nmpc_fmpc::FmpcProblem<2, 1, 3>
{
public:
FmpcProblemOscillator(double dt) : FmpcProblem(dt) {}
virtual StateDimVector stateEq(double t, const StateDimVector & x, const InputDimVector & u) const override
{
return stateEq(t, x, u, dt_);
}
virtual StateDimVector stateEq(double, // t
const StateDimVector & x,
const InputDimVector & u,
double dt) const
{
StateDimVector x_dot;
x_dot << (1.0 - std::pow(x[1], 2)) * x[0] - x[1] + u[0], x[0];
return x + dt * x_dot;
}
virtual double runningCost(double, // t
const StateDimVector & x,
const InputDimVector & u) const override
{
return 0.5 * (x.squaredNorm() + u.squaredNorm());
}
virtual double terminalCost(double, // t
const StateDimVector & // x
) const override
{
return 0;
}
virtual IneqDimVector ineqConst(double, // t
const StateDimVector & x,
const InputDimVector & u) const override
{
IneqDimVector g;
g[0] = -1 * x[1] - 0.05;
g[1] = -1 * u[0] - 1.0;
g[2] = u[0] - 0.9;
return g;
}
virtual void calcStateEqDeriv(double, // t
const StateDimVector & x,
const InputDimVector &, // u
Eigen::Ref<StateStateDimMatrix> state_eq_deriv_x,
Eigen::Ref<StateInputDimMatrix> state_eq_deriv_u) const override
{
state_eq_deriv_x.setZero();
state_eq_deriv_x(0, 0) = 1.0 - std::pow(x[1], 2);
state_eq_deriv_x(0, 1) = -2 * x[0] * x[1] - 1.0;
state_eq_deriv_x(1, 0) = 1;
state_eq_deriv_x *= dt_;
state_eq_deriv_x.diagonal().array() += 1;
state_eq_deriv_u.setZero();
state_eq_deriv_u(0, 0) = 1;
state_eq_deriv_u *= dt_;
}
virtual void calcRunningCostDeriv(double, // t
const StateDimVector & x,
const InputDimVector & u,
Eigen::Ref<StateDimVector> running_cost_deriv_x,
Eigen::Ref<InputDimVector> running_cost_deriv_u) const override
{
running_cost_deriv_x = x;
running_cost_deriv_u = u;
}
virtual void calcRunningCostDeriv(double t,
const StateDimVector & x,
const InputDimVector & u,
Eigen::Ref<StateDimVector> running_cost_deriv_x,
Eigen::Ref<InputDimVector> running_cost_deriv_u,
Eigen::Ref<StateStateDimMatrix> running_cost_deriv_xx,
Eigen::Ref<InputInputDimMatrix> running_cost_deriv_uu,
Eigen::Ref<StateInputDimMatrix> running_cost_deriv_xu) const override
{
calcRunningCostDeriv(t, x, u, running_cost_deriv_x, running_cost_deriv_u);
running_cost_deriv_xx.setIdentity();
running_cost_deriv_uu.setIdentity();
running_cost_deriv_xu.setZero();
}
virtual void calcTerminalCostDeriv(double, // t
const StateDimVector &, // x
Eigen::Ref<StateDimVector> terminal_cost_deriv_x) const override
{
terminal_cost_deriv_x.setZero();
}
virtual void calcTerminalCostDeriv(double t,
const StateDimVector & x,
Eigen::Ref<StateDimVector> terminal_cost_deriv_x,
Eigen::Ref<StateStateDimMatrix> terminal_cost_deriv_xx) const override
{
calcTerminalCostDeriv(t, x, terminal_cost_deriv_x);
terminal_cost_deriv_xx.setZero();
}
virtual void calcIneqConstDeriv(double, // t
const StateDimVector &, // x
const InputDimVector &, // u
Eigen::Ref<IneqStateDimMatrix> ineq_const_deriv_x,
Eigen::Ref<IneqInputDimMatrix> ineq_const_deriv_u) const override
{
ineq_const_deriv_x.setZero();
ineq_const_deriv_x(0, 1) = -1;
ineq_const_deriv_u.setZero();
ineq_const_deriv_u(1, 0) = -1;
ineq_const_deriv_u(2, 0) = 1;
}
};
TEST(TestFmpcOscillator, SolveMpc)
{
double horizon_dt = 0.01; // [sec]
double horizon_duration = 4.0; // [sec]
int horizon_steps = static_cast<int>(horizon_duration / horizon_dt);
double end_t = 10.0; // [sec]
// Instantiate problem
auto fmpc_problem = std::make_shared<FmpcProblemOscillator>(horizon_dt);
// Instantiate solver
auto fmpc_solver = std::make_shared<nmpc_fmpc::FmpcSolver<2, 1, 3>>(fmpc_problem);
fmpc_solver->config().horizon_steps = horizon_steps;
fmpc_solver->config().max_iter = 3;
// The option "init_complementary_variable" is effective for problems in which state constraints are infasible.
// fmpc_solver->config().init_complementary_variable = true;
Variable variable(horizon_steps);
variable.reset(0.0, 0.0, 0.0, 1e0, 1e0);
// Initialize simulation
double sim_dt = 0.005; // [sec]
double current_t = 0; // [sec]
FmpcProblemOscillator::StateDimVector current_x = FmpcProblemOscillator::StateDimVector(0.0, 1.0);
// Run MPC loop
bool first_iter = true;
std::string file_path = "/tmp/TestFmpcOscillatorResult.txt";
std::ofstream ofs(file_path);
ofs << "time x[0] x[1] u[0] mpc_iter computation_time kkt_error" << std::endl;
while(current_t < end_t)
{
// Solve
auto status = fmpc_solver->solve(current_t, current_x, variable);
EXPECT_TRUE(status == Status::Succeeded || status == Status::MaxIterationReached);
if(first_iter)
{
first_iter = false;
fmpc_solver->dumpTraceDataList("/tmp/TestFmpcOscillatorTraceData.txt");
}
// Check inequality constraints
FmpcProblemOscillator::InputDimVector current_u = fmpc_solver->variable().u_list[0];
FmpcProblemOscillator::IneqDimVector current_g = fmpc_problem->ineqConst(current_t, current_x, current_u);
EXPECT_TRUE((current_g.array() <= 0).all()) << "Inequality constraints violated: " << current_g.transpose();
// Dump
ofs << current_t << " " << current_x.transpose() << " " << current_u.transpose() << " "
<< fmpc_solver->traceDataList().back().iter << " " << fmpc_solver->computationDuration().solve << " "
<< fmpc_solver->traceDataList().back().kkt_error << std::endl;
// Update to next step
current_x = fmpc_problem->stateEq(current_t, current_x, current_u, sim_dt);
current_t += sim_dt;
variable = fmpc_solver->variable();
}
// Check final convergence
EXPECT_LT(std::abs(current_x[0]), 1e-2);
EXPECT_LT(std::abs(current_x[1]), 1e-2);
std::cout << "Run the following commands in gnuplot:\n"
<< " set key autotitle columnhead\n"
<< " set key noenhanced\n"
<< " plot \"" << file_path << "\" u 1:2 w lp, \"\" u 1:3 w lp, \"\" u 1:4 w lp\n";
}
TEST(TestFmpcOscillator, CheckDerivative)
{
double horizon_dt = 0.1; // [sec]
auto fmpc_problem = std::make_shared<FmpcProblemOscillator>(horizon_dt);
double t = 0;
FmpcProblemOscillator::StateDimVector x;
x << 0.1, -0.2;
FmpcProblemOscillator::InputDimVector u;
u << 0.3;
constexpr double deriv_eps = 1e-6;
{
FmpcProblemOscillator::StateStateDimMatrix state_eq_deriv_x_analytical;
FmpcProblemOscillator::StateInputDimMatrix state_eq_deriv_u_analytical;
fmpc_problem->calcStateEqDeriv(t, x, u, state_eq_deriv_x_analytical, state_eq_deriv_u_analytical);
FmpcProblemOscillator::StateStateDimMatrix state_eq_deriv_x_numerical;
FmpcProblemOscillator::StateInputDimMatrix state_eq_deriv_u_numerical;
for(int i = 0; i < fmpc_problem->stateDim(); i++)
{
state_eq_deriv_x_numerical.col(i) =
(fmpc_problem->stateEq(t, x + deriv_eps * FmpcProblemOscillator::StateDimVector::Unit(i), u)
- fmpc_problem->stateEq(t, x - deriv_eps * FmpcProblemOscillator::StateDimVector::Unit(i), u))
/ (2 * deriv_eps);
}
for(int i = 0; i < fmpc_problem->inputDim(); i++)
{
state_eq_deriv_u_numerical.col(i) =
(fmpc_problem->stateEq(t, x, u + deriv_eps * FmpcProblemOscillator::InputDimVector::Unit(i))
- fmpc_problem->stateEq(t, x, u - deriv_eps * FmpcProblemOscillator::InputDimVector::Unit(i)))
/ (2 * deriv_eps);
}
EXPECT_LT((state_eq_deriv_x_analytical - state_eq_deriv_x_numerical).norm(), 1e-6);
EXPECT_LT((state_eq_deriv_u_analytical - state_eq_deriv_u_numerical).norm(), 1e-6);
}
{
FmpcProblemOscillator::IneqStateDimMatrix ineq_const_deriv_x_analytical;
FmpcProblemOscillator::IneqInputDimMatrix ineq_const_deriv_u_analytical;
fmpc_problem->calcIneqConstDeriv(t, x, u, ineq_const_deriv_x_analytical, ineq_const_deriv_u_analytical);
FmpcProblemOscillator::IneqStateDimMatrix ineq_const_deriv_x_numerical;
FmpcProblemOscillator::IneqInputDimMatrix ineq_const_deriv_u_numerical;
for(int i = 0; i < fmpc_problem->stateDim(); i++)
{
ineq_const_deriv_x_numerical.col(i) =
(fmpc_problem->ineqConst(t, x + deriv_eps * FmpcProblemOscillator::StateDimVector::Unit(i), u)
- fmpc_problem->ineqConst(t, x - deriv_eps * FmpcProblemOscillator::StateDimVector::Unit(i), u))
/ (2 * deriv_eps);
}
for(int i = 0; i < fmpc_problem->inputDim(); i++)
{
ineq_const_deriv_u_numerical.col(i) =
(fmpc_problem->ineqConst(t, x, u + deriv_eps * FmpcProblemOscillator::InputDimVector::Unit(i))
- fmpc_problem->ineqConst(t, x, u - deriv_eps * FmpcProblemOscillator::InputDimVector::Unit(i)))
/ (2 * deriv_eps);
}
EXPECT_LT((ineq_const_deriv_x_analytical - ineq_const_deriv_x_numerical).norm(), 1e-6);
EXPECT_LT((ineq_const_deriv_u_analytical - ineq_const_deriv_u_numerical).norm(), 1e-6);
}
}
int main(int argc, char ** argv)
{
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}