Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

complete rfft,rfft2,rfftn,ihfft,ihfft2,ihfftn unittest and doc string #30

Merged
merged 1 commit into from
Sep 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions python/paddle/fluid/tests/unittests/fft/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
283 changes: 268 additions & 15 deletions python/paddle/fluid/tests/unittests/fft/test_fft.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,37 +19,47 @@
from scipy.fft import hfftn, hfft2
import numpy as np
import paddle
import scipy.fft

TEST_CASE_NAME = "test_case"
paddle.set_default_dtype('float64')

TEST_CASE_NAME = 'test_case'


def setUpModule():
global rtol
global atol
rtol = {'float32': 1e-6, 'float64': 1e-6}
# All test case will use float64 for compare percision, refs:
# https://github.com/PaddlePaddle/Paddle/wiki/Upgrade-OP-Precision-to-Float64
rtol = {'float32': 1e-06, 'float64': 1e-7}
atol = {'float32': 0.0, 'float64': 0.0}


def tearDownModule():
pass


def rand_x(dims=1, dtype='float32', min_dim_len=1, max_dim_len=10):
"""generate random input"""
def rand_x(dims=1,
dtype='float64',
min_dim_len=1,
max_dim_len=10,
complex=False):
shape = [np.random.randint(min_dim_len, max_dim_len) for i in range(dims)]
return np.random.randn(*shape).astype(dtype)
if complex:
return np.random.randn(*shape).astype(dtype) + 1.j * np.random.randn(
*shape).astype(dtype)
else:
return np.random.randn(*shape).astype(dtype)


def parameterize(attrs, input_values=None):
""" Parameterizes a test class by setting attributes on the class.
"""

if isinstance(attrs, str):
attrs = [attrs]
input_dicts = (attrs if input_values is None else
[dict(zip(attrs, vals)) for vals in input_values])

def decorator(base_class):
"""class decorator"""
test_class_module = sys.modules[base_class.__module__].__dict__
for idx, input_dict in enumerate(input_dicts):
test_class_dict = dict(base_class.__dict__)
Expand Down Expand Up @@ -80,6 +90,7 @@ def to_safe_name(s):
return str(re.sub("[^a-zA-Z0-9_]+", "_", s))


# yapf: disable
@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'), [
('test_x_complex128',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
Expand Down Expand Up @@ -217,10 +228,12 @@ def test_hfftn(self):
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.complex128), None, (-2, -1), "backward"),
('test_n_grater_than_input_length',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), [1, 2], (-2, -1),
np.random.randn(4, 4, 4) + 1j *
np.random.randn(4, 4, 4), [1, 2], (-2, -1),
"backward"),
('test_n_smaller_than_input_length',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), [2, 1], (-2, -1),
np.random.randn(4, 4, 4) + 1j *
np.random.randn(4, 4, 4), [2, 1], (-2, -1),
"backward"),
('test_axis_not_last',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), None, (-2, -1),
Expand Down Expand Up @@ -250,7 +263,8 @@ def test_hfft2(self):
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.complex128), None, (-2, -1), "backward"),
('test_n_equal_input_length',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (2, 1), (-2, -1),
np.random.randn(4, 4, 4) + 1j *
np.random.randn(4, 4, 4), (2, 1), (-2, -1),
"backward"),
('test_axis_not_last',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), None, (-2, -1),
Expand Down Expand Up @@ -364,7 +378,8 @@ def test_irfft(self):
'test_axis_type', np.random.randn(4) + 1j * np.random.randn(4), None,
-1, 'backward',
ValueError), ('test_norm_not_in_enum_value',
np.random.randn(4, 4) + 1j * np.random.randn(4, 4), None,
np.random.randn(4, 4) + 1j *
np.random.randn(4, 4), None,
None, 'random', ValueError)
])
class TestHfft2Exception(unittest.TestCase):
Expand Down Expand Up @@ -402,7 +417,8 @@ def test_hfft2(self):
'test_axis_type', np.random.randn(4) + 1j * np.random.randn(4), None,
1, 'backward',
ValueError), ('test_norm_not_in_enum_value',
np.random.randn(4, 4) + 1j * np.random.randn(4, 4), None,
np.random.randn(4, 4) + 1j *
np.random.randn(4, 4), None,
None, 'random', ValueError)
])
class TestIrfft2Exception(unittest.TestCase):
Expand Down Expand Up @@ -440,7 +456,8 @@ def test_irfft2(self):
'test_axis_type', np.random.randn(4) + 1j * np.random.randn(4), None,
1, 'backward',
ValueError), ('test_norm_not_in_enum_value',
np.random.randn(4, 4) + 1j * np.random.randn(4, 4), None,
np.random.randn(4, 4) + 1j *
np.random.randn(4, 4), None,
None, 'random', ValueError)
])
class TestHfftnException(unittest.TestCase):
Expand Down Expand Up @@ -478,7 +495,8 @@ def test_hfftn(self):
'test_axis_type', np.random.randn(4) + 1j * np.random.randn(4), None,
1, 'backward',
ValueError), ('test_norm_not_in_enum_value',
np.random.randn(4, 4) + 1j * np.random.randn(4, 4), None,
np.random.randn(4, 4) + 1j *
np.random.randn(4, 4), None,
None, 'random', ValueError)
])
class TestIrfftnException(unittest.TestCase):
Expand All @@ -496,5 +514,240 @@ def test_irfftn(self):
paddle.tensor.fft.irfftn(self.x, self.n, self.axis, self.norm)


@parameterize(
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'),
[('test_x_float64', rand_x(5, np.float64), None, -1, 'backward'), (
'test_n_grater_than_input_length', rand_x(
5, max_dim_len=5), 11, -1, 'backward'),
('test_n_smaller_than_input_length', rand_x(
5, min_dim_len=5), 3, -1,
'backward'), ('test_axis_not_last', rand_x(5), None, 3, 'backward'),
('test_norm_forward', rand_x(5), None, 3, 'forward'),
('test_norm_ortho', rand_x(5), None, 3, 'ortho')])
class TestRfft(unittest.TestCase):
def test_rfft(self):
self.assertTrue(
np.allclose(
np.fft.rfft(self.x, self.n, self.axis, self.norm),
paddle.tensor.fft.rfft(
paddle.to_tensor(self.x), self.n, self.axis, self.norm),
rtol=rtol.get(str(self.x.dtype)),
atol=atol.get(str(self.x.dtype))))


@parameterize(
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'),
[('test_n_nagative', rand_x(2), -1, -1, 'backward', ValueError),
('test_n_zero', rand_x(2), 0, -1, 'backward', ValueError),
('test_axis_out_of_range', rand_x(1), None, 10, 'backward',
ValueError), ('test_axis_with_array', rand_x(1), None, (0, 1),
'backward', ValueError), ('test_norm_not_in_enum_value',
rand_x(2), None, -1,
'random', ValueError)])
class TestRfftException(unittest.TestCase):
def test_rfft(self):
with self.assertRaises(self.expect_exception):
paddle.tensor.fft.rfft(self.x, self.n, self.axis, self.norm)


@parameterize(
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'), [
('test_x_float64', rand_x(5), None, (0, 1), 'backward'),
('test_n_grater_input_length', rand_x(
5, max_dim_len=5), (6, 6), (0, 1), 'backward'),
('test_n_smaller_than_input_length', rand_x(
5, min_dim_len=5), (4, 4), (0, 1), 'backward'),
('test_axis_random', rand_x(5), None, (1, 2), 'backward'),
('test_axis_none', rand_x(5), None, None, 'backward'),
('test_norm_forward', rand_x(5), None, (0, 1), 'forward'),
('test_norm_ortho', rand_x(5), None, (0, 1), 'ortho'),
])
class TestRfft2(unittest.TestCase):
def test_rfft2(self):
self.assertTrue(
np.allclose(
np.fft.rfft2(self.x, self.n, self.axis, self.norm),
paddle.fft.rfft2(
paddle.to_tensor(self.x), self.n, self.axis, self.norm),
rtol=rtol.get(str(self.x.dtype)),
atol=atol.get(str(self.x.dtype))))


@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'), [
('test_x_complex_input', rand_x(2, complex=True), None, (0, 1), 'backward',
ValueError),
# ('test_x_not_tensor', [0, 1], None, (0, 1), 'backward', ValueError),
('test_x_1dim_tensor', rand_x(1), None, (0, 1), 'backward', ValueError),
('test_n_nagative', rand_x(2), -1, (0, 1), 'backward', ValueError),
('test_n_zero', rand_x(2), 0, (0, 1), 'backward', ValueError),
('test_axis_out_of_range', rand_x(2), None, (0, 1, 2), 'backward',
ValueError),
('test_axis_with_array', rand_x(1), None, (0, 1), 'backward',
ValueError),
('test_axis_not_sequence', rand_x(5), None, -10, 'backward', ValueError),
('test_norm_not_enum', rand_x(2), None, -1, 'random', ValueError)])
class TestRfft2Exception(unittest.TestCase):
def test_rfft(self):
with self.assertRaises(self.expect_exception):
paddle.fft.rfft2(self.x, self.n, self.axis, self.norm)


@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'), [
('test_x_float64', rand_x(5, np.float64), None, None, 'backward'),
('test_n_grater_input_length', rand_x(5, max_dim_len=5), (6, 6), (1, 2),
'backward'),
('test_n_smaller_input_length', rand_x(5, min_dim_len=5), (3, 3), (1, 2),
'backward'),
('test_axis_not_default', rand_x(5), None, (1, 2),
'backward'), ('test_norm_forward', rand_x(5), None, None, 'forward'),
('test_norm_ortho', rand_x(5), None, None, 'ortho')])
class TestRfftn(unittest.TestCase):
def test_rfftn(self):
self.assertTrue(
np.allclose(
np.fft.rfftn(self.x, self.n, self.axis, self.norm),
paddle.fft.rfftn(
paddle.to_tensor(self.x), self.n, self.axis, self.norm),
rtol=rtol.get(str(self.x.dtype)),
atol=atol.get(str(self.x.dtype))))


@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'), [
('test_x_complex', rand_x(4, complex=True), None, None, 'backward',
ValueError),
('test_n_nagative', rand_x(4), (-1, -1), (1, 2), 'backward',
ValueError),
('test_n_not_sequence', rand_x(4), -1, None, 'backward',
ValueError),
('test_n_zero', rand_x(4), 0, None, 'backward', ValueError),
('test_axis_out_of_range', rand_x(1), None, [0, 1], 'backward',
ValueError),
('test_norm_not_in_enum', rand_x(2), None, -1,
'random', ValueError)])
class TestRfftnException(unittest.TestCase):
def test_rfft(self):
with self.assertRaises(self.expect_exception):
paddle.fft.rfftn(self.x, self.n, self.axis, self.norm)


@parameterize(
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'),
[('test_x_float64', rand_x(5, np.float64), None, -1, 'backward'), (
'test_n_grater_than_input_length', rand_x(
5, max_dim_len=5), 11, -1, 'backward'),
('test_n_smaller_than_input_length', rand_x(
5, min_dim_len=5), 3, -1,
'backward'), ('test_axis_not_last', rand_x(5), None, 3, 'backward'),
('test_norm_forward', rand_x(5), None, 3, 'forward'),
('test_norm_ortho', rand_x(5), None, 3, 'ortho')])
class TestIhfft(unittest.TestCase):
def test_ihfft(self):
self.assertTrue(
np.allclose(
np.fft.ihfft(self.x, self.n, self.axis, self.norm),
paddle.fft.ihfft(
paddle.to_tensor(self.x), self.n, self.axis, self.norm),
rtol=rtol.get(str(self.x.dtype)),
atol=atol.get(str(self.x.dtype))))


@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'), [
('test_n_nagative', rand_x(2), -1, -1, 'backward', ValueError),
('test_n_zero', rand_x(2), 0, -1, 'backward', ValueError),
('test_axis_out_of_range', rand_x(1), None, 10, 'backward', ValueError),
('test_axis_with_array', rand_x(1), None, (0, 1), 'backward', ValueError),
('test_norm_not_in_enum_value', rand_x(2), None, -1, 'random', ValueError)])
class TestIhfftException(unittest.TestCase):
def test_ihfft(self):
with self.assertRaises(self.expect_exception):
paddle.fft.ihfft(self.x, self.n, self.axis, self.norm)


@parameterize(
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'), [
('test_x_float64', rand_x(5), None, (0, 1), 'backward'),
('test_n_grater_input_length', rand_x(
5, max_dim_len=5), (11, 11), (0, 1), 'backward'),
('test_n_smaller_than_input_length', rand_x(
5, min_dim_len=5), (1, 1), (0, 1), 'backward'),
('test_axis_random', rand_x(5), None, (1, 2), 'backward'),
('test_axis_none', rand_x(5), None, None, 'backward'),
('test_norm_forward', rand_x(5), None, (0, 1), 'forward'),
('test_norm_ortho', rand_x(5), None, (0, 1), 'ortho'),
])
class TestIhfft2(unittest.TestCase):
def test_ihfft2(self):
self.assertTrue(
np.allclose(
scipy.fft.ihfft2(self.x, self.n, self.axis, self.norm),
paddle.fft.ihfft2(
paddle.to_tensor(self.x), self.n, self.axis, self.norm),
rtol=rtol.get(str(self.x.dtype)),
atol=atol.get(str(self.x.dtype))))


@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'), [
('test_x_complex_input', rand_x(2, complex=True), None, (0, 1), None,
ValueError),
# ('test_x_not_tensor', [0, 1], None, (0, 1), None, ValueError),
('test_x_1dim_tensor', rand_x(1), None, (0, 1), None, ValueError),
('test_n_nagative', rand_x(2), -1, (0, 1), 'backward',
ValueError),
('test_n_len_not_equal_axis', rand_x(5, max_dim_len=5), 11, (0, 1),
'backward', ValueError),
('test_n_zero', rand_x(2), (0, 0), (0, 1), 'backward',
ValueError),
('test_axis_out_of_range', rand_x(2), None,
(0, 1, 2), 'backward', ValueError),
('test_axis_with_array', rand_x(1), None, (0, 1), 'backward',
ValueError),
('test_axis_not_sequence', rand_x(5), None, -10, 'backward', ValueError),
('test_norm_not_enum', rand_x(2), None, -1, 'random', ValueError)])
class TestIhfft2Exception(unittest.TestCase):
def test_rfft(self):
with self.assertRaises(self.expect_exception):
paddle.fft.ihfft2(self.x, self.n, self.axis, self.norm)


@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm'), [
('test_x_float64', rand_x(5, np.float64), None, None, 'backward'),
('test_n_grater_input_length', rand_x(5, max_dim_len=5), (11, 11), (0, 1),
'backward'),
('test_n_smaller_input_length', rand_x(5, min_dim_len=5), (1, 1), (0, 1),
'backward'),
('test_axis_not_default', rand_x(5), None, (1, 2),
'backward'),
('test_norm_forward', rand_x(5), None, None, 'forward'),
('test_norm_ortho', rand_x(5), None, None, 'ortho')])
class TestIhfftn(unittest.TestCase):
def test_rfftn(self):
self.assertTrue(
np.allclose(
scipy.fft.ihfftn(self.x, self.n, self.axis, self.norm),
paddle.fft.ihfftn(
paddle.to_tensor(self.x), self.n, self.axis, self.norm),
rtol=rtol.get(str(self.x.dtype)),
atol=atol.get(str(self.x.dtype))))


@parameterize(
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'),
[('test_x_complex', rand_x(
4, complex=True), None, None, 'backward',
ValueError), ('test_n_nagative', rand_x(4), -1, None,
'backward', ValueError),
('test_n_zero', rand_x(4), 0, None, 'backward', ValueError),
('test_axis_out_of_range', rand_x(1), None, [0, 1], 'backward',
ValueError), ('test_norm_not_in_enum', rand_x(2), None, -1,
'random', ValueError)])
class TestIhfftnException(unittest.TestCase):
def test_rfft(self):
with self.assertRaises(self.expect_exception):
paddle.fft.ihfftn(self.x, self.n, self.axis, self.norm)


if __name__ == '__main__':
unittest.main()


# yapf: enable
Loading