-
Notifications
You must be signed in to change notification settings - Fork 174
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PiperOrigin-RevId: 699918558 Change-Id: I9e8fc1c130acf857d03f8f0de22fb9e77f1b4fbb
- Loading branch information
1 parent
23a6e6b
commit 12b7946
Showing
8 changed files
with
916 additions
and
337 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
140 changes: 140 additions & 0 deletions
140
concordia/contrib/components/agent/observations_since_last_update.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# Copyright 2024 DeepMind Technologies Limited. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""A component for tracking observations since the last update. | ||
""" | ||
|
||
from collections.abc import Callable | ||
import datetime | ||
|
||
from absl import logging as absl_logging | ||
from concordia.components import agent as agent_components | ||
from concordia.components.agent import action_spec_ignored | ||
from concordia.components.agent import memory_component | ||
from concordia.language_model import language_model | ||
from concordia.memory_bank import legacy_associative_memory | ||
from concordia.typing import entity_component | ||
from concordia.typing import logging | ||
|
||
|
||
def _get_earliest_timepoint( | ||
memory_component_: agent_components.memory_component.MemoryComponent, | ||
) -> datetime.datetime: | ||
"""Returns all memories in the memory bank. | ||
Args: | ||
memory_component_: The memory component to retrieve memories from. | ||
""" | ||
memories_data_frame = memory_component_.get_raw_memory() | ||
if not memories_data_frame.empty: | ||
sorted_memories_data_frame = memories_data_frame.sort_values( | ||
'time', ascending=True) | ||
return sorted_memories_data_frame['time'][0] | ||
else: | ||
absl_logging.warn('No memories found in memory bank.') | ||
return datetime.datetime.now() | ||
|
||
|
||
class ObservationsSinceLastUpdate(action_spec_ignored.ActionSpecIgnored): | ||
"""Report all observations since the last update.""" | ||
|
||
def __init__( | ||
self, | ||
model: language_model.LanguageModel, | ||
clock_now: Callable[[], datetime.datetime], | ||
memory_component_name: str = ( | ||
memory_component.DEFAULT_MEMORY_COMPONENT_NAME | ||
), | ||
pre_act_key: str = '\nObservations', | ||
logging_channel: logging.LoggingChannel = logging.NoOpLoggingChannel, | ||
): | ||
"""Initialize a component to consider the latest observations. | ||
Args: | ||
model: The language model to use. | ||
clock_now: Function that returns the current time. | ||
memory_component_name: The name of the memory component from which to | ||
retrieve related memories. | ||
pre_act_key: Prefix to add to the output of the component when called | ||
in `pre_act`. | ||
logging_channel: The channel to log debug information to. | ||
""" | ||
super().__init__(pre_act_key) | ||
self._model = model | ||
self._clock_now = clock_now | ||
self._memory_component_name = memory_component_name | ||
self._logging_channel = logging_channel | ||
|
||
self._previous_time = None | ||
|
||
def pre_observe( | ||
self, | ||
observation: str, | ||
) -> str: | ||
memory = self.get_entity().get_component( | ||
self._memory_component_name, | ||
type_=memory_component.MemoryComponent) | ||
memory.add( | ||
f'[observation] {observation}', | ||
metadata={'tags': ['observation']}, | ||
) | ||
return '' | ||
|
||
def _make_pre_act_value(self) -> str: | ||
"""Returns a representation of the current situation to pre act.""" | ||
current_time = self._clock_now() | ||
memory = self.get_entity().get_component( | ||
self._memory_component_name, | ||
type_=memory_component.MemoryComponent) | ||
|
||
if self._previous_time is None: | ||
self._previous_time = _get_earliest_timepoint(memory) | ||
|
||
interval_scorer = legacy_associative_memory.RetrieveTimeInterval( | ||
time_from=self._previous_time, | ||
time_until=current_time, | ||
add_time=True, | ||
) | ||
mems = [mem.text for mem in memory.retrieve(scoring_fn=interval_scorer)] | ||
result = '\n'.join(mems) + '\n' | ||
|
||
self._logging_channel({ | ||
'Key': self.get_pre_act_key(), | ||
'Value': result, | ||
}) | ||
|
||
self._previous_time = current_time | ||
|
||
return result | ||
|
||
def get_state(self) -> entity_component.ComponentState: | ||
"""Converts the component to JSON data.""" | ||
with self._lock: | ||
if self._previous_time is None: | ||
previous_time = '' | ||
else: | ||
previous_time = self._previous_time.strftime('%Y-%m-%d %H:%M:%S') | ||
return { | ||
'previous_time': previous_time, | ||
} | ||
|
||
def set_state(self, state: entity_component.ComponentState) -> None: | ||
"""Sets the component state from JSON data.""" | ||
with self._lock: | ||
if state['previous_time']: | ||
previous_time = datetime.datetime.strptime( | ||
state['previous_time'], '%Y-%m-%d %H:%M:%S') | ||
else: | ||
previous_time = None | ||
self._previous_time = previous_time |
204 changes: 204 additions & 0 deletions
204
concordia/contrib/components/agent/situation_representation_via_narrative.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
# Copyright 2024 DeepMind Technologies Limited. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""A component for representing the current situation via narrative. | ||
""" | ||
|
||
from collections.abc import Callable, Sequence | ||
import datetime | ||
|
||
from absl import logging as absl_logging | ||
from concordia.components import agent as agent_components | ||
from concordia.components.agent import action_spec_ignored | ||
from concordia.components.agent import memory_component | ||
from concordia.document import interactive_document | ||
from concordia.language_model import language_model | ||
from concordia.memory_bank import legacy_associative_memory | ||
from concordia.typing import entity_component | ||
from concordia.typing import logging | ||
from concordia.typing import memory as memory_lib | ||
|
||
|
||
def _get_all_memories( | ||
memory_component_: agent_components.memory_component.MemoryComponent, | ||
add_time: bool = True, | ||
sort_by_time: bool = True, | ||
constant_score: float = 0.0, | ||
) -> Sequence[memory_lib.MemoryResult]: | ||
"""Returns all memories in the memory bank. | ||
Args: | ||
memory_component_: The memory component to retrieve memories from. | ||
add_time: whether to add time | ||
sort_by_time: whether to sort by time | ||
constant_score: assign this score value to each memory | ||
""" | ||
texts = memory_component_.get_all_memories_as_text(add_time=add_time, | ||
sort_by_time=sort_by_time) | ||
return [memory_lib.MemoryResult(text=t, score=constant_score) for t in texts] | ||
|
||
|
||
def _get_earliest_timepoint( | ||
memory_component_: agent_components.memory_component.MemoryComponent, | ||
) -> datetime.datetime: | ||
"""Returns all memories in the memory bank. | ||
Args: | ||
memory_component_: The memory component to retrieve memories from. | ||
""" | ||
memories_data_frame = memory_component_.get_raw_memory() | ||
if not memories_data_frame.empty: | ||
sorted_memories_data_frame = memories_data_frame.sort_values( | ||
'time', ascending=True) | ||
return sorted_memories_data_frame['time'][0] | ||
else: | ||
absl_logging.warn('No memories found in memory bank.') | ||
return datetime.datetime.now() | ||
|
||
|
||
class SituationRepresentation(action_spec_ignored.ActionSpecIgnored): | ||
"""Consider ``what kind of situation am I in now?``.""" | ||
|
||
def __init__( | ||
self, | ||
model: language_model.LanguageModel, | ||
clock_now: Callable[[], datetime.datetime], | ||
memory_component_name: str = ( | ||
memory_component.DEFAULT_MEMORY_COMPONENT_NAME | ||
), | ||
pre_act_key: str = 'The current situation', | ||
logging_channel: logging.LoggingChannel = logging.NoOpLoggingChannel, | ||
): | ||
"""Initialize a component to consider the current situation. | ||
Args: | ||
model: The language model to use. | ||
clock_now: Function that returns the current time. | ||
memory_component_name: The name of the memory component from which to | ||
retrieve related memories. | ||
pre_act_key: Prefix to add to the output of the component when called | ||
in `pre_act`. | ||
logging_channel: The channel to log debug information to. | ||
""" | ||
super().__init__(pre_act_key) | ||
self._model = model | ||
self._clock_now = clock_now | ||
self._memory_component_name = memory_component_name | ||
self._logging_channel = logging_channel | ||
|
||
self._previous_time = None | ||
self._situation_thus_far = None | ||
|
||
def _make_pre_act_value(self) -> str: | ||
"""Returns a representation of the current situation to pre act.""" | ||
agent_name = self.get_entity().name | ||
current_time = self._clock_now() | ||
memory = self.get_entity().get_component( | ||
self._memory_component_name, | ||
type_=memory_component.MemoryComponent) | ||
|
||
initial_step_thought_chain = '' | ||
if self._situation_thus_far is None: | ||
self._previous_time = _get_earliest_timepoint(memory) | ||
chain_of_thought = interactive_document.InteractiveDocument(self._model) | ||
chain_of_thought.statement('~~ Creative Writing Assignment ~~') | ||
chain_of_thought.statement(f'Protagonist: {agent_name}') | ||
mems = '\n'.join([mem.text for mem in _get_all_memories(memory)]) | ||
chain_of_thought.statement(f'Story fragments and world data:\n{mems}') | ||
chain_of_thought.statement(f'Events continue after {current_time}') | ||
self._situation_thus_far = chain_of_thought.open_question( | ||
question=( | ||
'Narratively summarize the story fragments and world data. Give ' | ||
'special emphasis to atypical features of the setting such as ' | ||
'when and where the story takes place as well as any causal ' | ||
'mechanisms or affordances mentioned in the information ' | ||
'provided. Highlight the goals, personalities, occupations, ' | ||
'skills, and affordances of the named characters and ' | ||
'relationships between them. If any specific numbers were ' | ||
'mentioned then make sure to include them. Use third-person ' | ||
'omniscient perspective.'), | ||
max_tokens=1000, | ||
terminators=(), | ||
question_label='Exercise') | ||
initial_step_thought_chain = '\n'.join( | ||
chain_of_thought.view().text().splitlines()) | ||
|
||
interval_scorer = legacy_associative_memory.RetrieveTimeInterval( | ||
time_from=self._previous_time, | ||
time_until=current_time, | ||
add_time=True, | ||
) | ||
mems = [mem.text for mem in memory.retrieve(scoring_fn=interval_scorer)] | ||
result = '\n'.join(mems) + '\n' | ||
chain_of_thought = interactive_document.InteractiveDocument(self._model) | ||
chain_of_thought.statement(f'Context:\n{self._situation_thus_far}') | ||
chain_of_thought.statement(f'Protagonist: {agent_name}') | ||
chain_of_thought.statement( | ||
f'Thoughts and memories of {agent_name}:\n{result}' | ||
) | ||
self._situation_thus_far = chain_of_thought.open_question( | ||
question=( | ||
'What situation does the protagonist find themselves in? ' | ||
'Make sure to provide enough detail to give the ' | ||
'reader a comprehensive understanding of the world ' | ||
'inhabited by the protagonist, their affordances in that ' | ||
'world, actions they may be able to take, effects their ' | ||
'actions may produce, and what is currently going on. If any ' | ||
'specific numbers were mentioned then make sure to include them.' | ||
'Also, make sure to repeat all details of the context that could ' | ||
'ever be relevant, now or in the future.' | ||
), | ||
max_tokens=1000, | ||
terminators=(), | ||
question_label='Exercise', | ||
) | ||
chain_of_thought.statement(f'The current date and time is {current_time}') | ||
|
||
chain_of_thought_text = '\n'.join( | ||
chain_of_thought.view().text().splitlines()) | ||
|
||
self._logging_channel({ | ||
'Key': self.get_pre_act_key(), | ||
'Value': self._situation_thus_far, | ||
'Chain of thought': (initial_step_thought_chain + | ||
'\n***\n' + | ||
chain_of_thought_text), | ||
}) | ||
|
||
self._previous_time = current_time | ||
|
||
return self._situation_thus_far | ||
|
||
def get_state(self) -> entity_component.ComponentState: | ||
"""Converts the component to JSON data.""" | ||
with self._lock: | ||
if self._previous_time is None: | ||
previous_time = '' | ||
else: | ||
previous_time = self._previous_time.strftime('%Y-%m-%d %H:%M:%S') | ||
return { | ||
'previous_time': previous_time, | ||
'situation_thus_far': self._situation_thus_far, | ||
} | ||
|
||
def set_state(self, state: entity_component.ComponentState) -> None: | ||
"""Sets the component state from JSON data.""" | ||
with self._lock: | ||
if state['previous_time']: | ||
previous_time = datetime.datetime.strptime( | ||
state['previous_time'], '%Y-%m-%d %H:%M:%S') | ||
else: | ||
previous_time = None | ||
self._previous_time = previous_time | ||
self._situation_thus_far = state['situation_thus_far'] |
Oops, something went wrong.