Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add benchmarking for hnsw flat based on efSearch #3858

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 33 additions & 58 deletions faiss/perf_tests/bench_hnsw.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,10 +52,12 @@ def accumulate_perf_counter(
def run_on_dataset(
ds: Dataset,
M: int,
num_threads:
int,
num_threads: int,
num_add_iterations: int,
num_search_iterations: int,
efSearch: int = 16,
efConstruction: int = 40
efConstruction: int = 40,
search_bounded_queue: bool = True,
) -> Dict[str, int]:
xq = ds.get_queries()
xb = ds.get_database()
Expand All @@ -67,22 +69,27 @@ def run_on_dataset(
# pyre-ignore[16]: Module `faiss` has no attribute `omp_set_num_threads`.
faiss.omp_set_num_threads(num_threads)
index = faiss.IndexHNSWFlat(d, M)
index.hnsw.efConstruction = 40 # default
index.hnsw.efConstruction = efConstruction # default
with timed_execution() as t:
index.add(xb)
for _ in range(num_add_iterations):
index.add(xb)
counters = {}
accumulate_perf_counter("add", t, counters)
counters["nb"] = nb
counters["num_add_iterations"] = num_add_iterations

index.hnsw.efSearch = efSearch
index.hnsw.search_bounded_queue = search_bounded_queue
with timed_execution() as t:
D, I = index.search(xq, k)
for _ in range(num_search_iterations):
D, I = index.search(xq, k)
accumulate_perf_counter("search", t, counters)
counters["nq"] = nq
counters["efSearch"] = efSearch
counters["efConstruction"] = efConstruction
counters["M"] = M
counters["d"] = d
counters["num_search_iterations"] = num_search_iterations

return counters

Expand All @@ -93,61 +100,25 @@ def run(
nq: int,
M: int,
num_threads: int,
num_add_iterations: int = 1,
num_search_iterations: int = 1,
efSearch: int = 16,
efConstruction: int = 40,
search_bounded_queue: bool = True,
) -> Dict[str, int]:
ds = SyntheticDataset(d=d, nb=nb, nt=0, nq=nq, metric="L2", seed=1338)
return run_on_dataset(
ds,
M=M,
num_add_iterations=num_add_iterations,
num_search_iterations=num_search_iterations,
num_threads=num_threads,
efSearch=efSearch,
efConstruction=efConstruction,
search_bounded_queue=search_bounded_queue,
)


def _merge_counters(
element: Dict[str, int], accu: Optional[Dict[str, int]] = None
) -> Dict[str, int]:
if accu is None:
return dict(element)
else:
assert accu.keys() <= element.keys(), (
"Accu keys must be a subset of element keys: "
f"{accu.keys()} not a subset of {element.keys()}"
)
for key in accu.keys():
if is_perf_counter(key):
accu[key] += element[key]
return accu


def run_with_iterations(
iterations: int,
d: int,
nb: int,
nq: int,
M: int,
num_threads: int,
efSearch: int = 16,
efConstruction: int = 40,
) -> Dict[str, int]:
result = None
for _ in range(iterations):
counters = run(
d=d,
nb=nb,
nq=nq,
M=M,
num_threads=num_threads,
efSearch=efSearch,
efConstruction=efConstruction,
)
result = _merge_counters(counters, result)
assert result is not None
return result


def _accumulate_counters(
element: Dict[str, int], accu: Optional[Dict[str, List[int]]] = None
) -> Dict[str, List[int]]:
Expand All @@ -169,10 +140,13 @@ def main():
parser.add_argument("-M", "--M", type=int, required=True)
parser.add_argument("-t", "--num-threads", type=int, required=True)
parser.add_argument("-w", "--warm-up-iterations", type=int, default=0)
parser.add_argument("-i", "--num-iterations", type=int, default=20)
parser.add_argument("-i", "--num-search-iterations", type=int, default=20)
parser.add_argument("-i", "--num-add-iterations", type=int, default=20)
parser.add_argument("-r", "--num-repetitions", type=int, default=20)
parser.add_argument("-s", "--ef-search", type=int, default=16)
parser.add_argument("-c", "--ef-construction", type=int, default=40)
parser.add_argument("-b", "--search-bounded-queue", action="store_true")

parser.add_argument("-n", "--nb", type=int, default=5000)
parser.add_argument("-q", "--nq", type=int, default=500)
parser.add_argument("-d", "--d", type=int, default=128)
Expand All @@ -181,15 +155,17 @@ def main():
if args.warm_up_iterations > 0:
print(f"Warming up for {args.warm_up_iterations} iterations...")
# warm-up
run_with_iterations(
iterations=args.warm_up_iterations,
run(
num_search_iterations=args.warm_up_iterations,
num_add_iterations=args.warm_up_iterations,
d=args.d,
nb=args.nb,
nq=args.nq,
M=args.M,
num_threads=args.num_threads,
efSearch=args.ef_search,
efConstruction=args.ef_construction,
search_bounded_queue=args.search_bounded_queue,
)
print(
f"Running benchmark with dataset(nb={args.nb}, nq={args.nq}, "
Expand All @@ -198,24 +174,23 @@ def main():
)
result = None
for _ in range(args.num_repetitions):
counters = run_with_iterations(
iterations=args.num_iterations,
counters = run(
num_search_iterations=args.num_search_iterations,
num_add_iterations=args.num_add_iterations,
d=args.d,
nb=args.nb,
nq=args.nq,
M=args.M,
num_threads=args.num_threads,
efSearch=args.ef_search,
efConstruction=args.ef_construction,
search_bounded_queue=args.search_bounded_queue,
)
result = _accumulate_counters(counters, result)
assert result is not None
for counter, values in result.items():
if is_perf_counter(counter):
print(
"%s t=%.3f us (± %.4f)" % (
counter,
np.mean(values),
np.std(values)
)
"%s t=%.3f us (± %.4f)" %
(counter, np.mean(values), np.std(values))
)
Loading