Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[example] Adds PyTorch action recognition model to model zoo #3292

Merged
merged 1 commit into from
Jul 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,12 @@ public class PtModelZoo extends ModelZoo {
public static final String GROUP_ID = "ai.djl.pytorch";

PtModelZoo() {
addModel(
REPOSITORY.model(
CV.ACTION_RECOGNITION,
GROUP_ID,
"Human-Action-Recognition-VIT-Base-patch16-224",
"0.0.1"));
addModel(REPOSITORY.model(CV.IMAGE_CLASSIFICATION, GROUP_ID, "resnet", "0.0.1"));
addModel(
REPOSITORY.model(CV.IMAGE_CLASSIFICATION, GROUP_ID, "resnet18_embedding", "0.0.1"));
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
{
"metadataVersion": "0.2",
"resourceType": "model",
"application": "cv/action_recognition",
"groupId": "ai.djl.pytorch",
"artifactId": "Human-Action-Recognition-VIT-Base-patch16-224",
"name": "Human-Action-Recognition-VIT-Base-patch16-224",
"description": "Action Recognition models",
"website": "http://www.djl.ai/engines/pytorch/model-zoo",
"licenses": {
"license": {
"name": "The Apache License, Version 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0"
}
},
"artifacts": [
{
"version": "0.0.1",
"snapshot": false,
"name": "Human-Action-Recognition-VIT-Base-patch16-224",
"properties": {
},
"arguments": {
"width": 224,
"height": 224,
"resize": true,
"scaleFactor": 0.00392156862745098,
"normalize": "0.5,0.5,0.5,0.5,0.5,0.5",
"applySoftmax": true,
"translatorFactory": "ai.djl.modality.cv.translator.ImageClassificationTranslatorFactory"
},
"options": {
"mapLocation": "true"
},
"files": {
"model": {
"uri": "0.0.1/Human-Action-Recognition-VIT-Base-patch16-224.zip",
"sha1Hash": "943cf0f9cfab07445489aeb67b9c74c9c85680f4",
"name": "",
"size": 318499747
}
}
}
]
}
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,6 @@
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
* An example of inference using an action recognition model.
Expand All @@ -48,16 +46,16 @@ public static void main(String[] args) throws IOException, ModelException, Trans
}

public static Classifications predict() throws IOException, ModelException, TranslateException {
Path imageFile = Paths.get("src/test/resources/action_discus_throw.png");
Image img = ImageFactory.getInstance().fromFile(imageFile);
String url = "https://resources.djl.ai/images/action_dance.jpg";
Image img = ImageFactory.getInstance().fromUrl(url);

// Use DJL MXNet model zoo model
// Use DJL PyTorch model zoo model
Criteria<Image, Classifications> criteria =
Criteria.builder()
.setTypes(Image.class, Classifications.class)
.optModelUrls(
"djl://ai.djl.mxnet/action_recognition/0.0.1/inceptionv3_ucf101")
.optEngine("MXNet")
"djl://ai.djl.pytorch/Human-Action-Recognition-VIT-Base-patch16-224")
.optEngine("PyTorch")
.optProgress(new ProgressBar())
.build();

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
import ai.djl.ModelException;
import ai.djl.examples.inference.cv.ActionRecognition;
import ai.djl.modality.Classifications;
import ai.djl.testing.TestRequirements;
import ai.djl.translate.TranslateException;

import org.testng.Assert;
Expand All @@ -27,11 +26,9 @@ public class ActionRecognitionTest {

@Test
public void testActionRecognition() throws ModelException, TranslateException, IOException {
TestRequirements.linux();

Classifications result = ActionRecognition.predict();
Classifications.Classification best = result.best();
Assert.assertEquals(best.getClassName(), "ThrowDiscus");
Assert.assertEquals(best.getClassName(), "Dancing");
Assert.assertTrue(Double.compare(best.getProbability(), 0.9) > 0);
}
}
Loading