Skip to content

copenlu/frame-align

Repository files navigation

frame-align

Project exploring alignment of frames across modalities

Install

Note, this installation was tested on

  • Ubuntu 22.04
  • cuda 12.4
  • nvidia driver version 550.54.1

Step 1. Clone this repository and navigate to frame-align folder

git clone https://github.com/copenlu/frame-align.git
cd frame-align

The installation also installs LLAVA model. If you are not using Linux, see instructions for installing LLaVA model here for macOS and Windows.

< TO DO: Update the instructions to avoid this confusion of OS >

Step 2. Install Package

conda create -n frame-align python=3.10 -y
conda activate frame-align
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
  1. Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation

Our set up used flash-attn==2.5.7 but it depends on your cuda version to check for dependency issues.

Upgrade to latest code base

git pull
pip install -e .

# if you see some import errors when you upgrade,
# please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages