Skip to content

Commit

Permalink
feat: start adaptive rag implementation
Browse files Browse the repository at this point in the history
work on #6
  • Loading branch information
bsorrentino committed Jun 18, 2024
1 parent 7af44a6 commit 16a0aef
Show file tree
Hide file tree
Showing 2 changed files with 289 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
package dev.langchain4j.adaptiverag;

import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.input.Prompt;
import dev.langchain4j.model.input.structured.StructuredPrompt;
import dev.langchain4j.model.input.structured.StructuredPromptProcessor;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.model.openai.OpenAiEmbeddingModel;
import dev.langchain4j.service.AiServices;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.V;
import dev.langchain4j.store.embedding.EmbeddingSearchRequest;
import dev.langchain4j.store.embedding.EmbeddingSearchResult;
import dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore;
import lombok.Value;
import lombok.var;
import org.bsc.langgraph4j.state.AgentState;
import org.bsc.langgraph4j.state.AppendableValue;
import org.bsc.langgraph4j.utils.CollectionsUtils;

import java.time.Duration;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.stream.Collectors;

import static java.util.Collections.emptyList;
import static org.bsc.langgraph4j.utils.CollectionsUtils.mapOf;

public class AdaptiveRag {

/**
* Represents the state of our graph.
* Attributes:
* question: question
* generation: LLM generation
* documents: list of documents
*/
public static class State extends AgentState {

public State(Map<String, Object> initData) {
super(initData);
}

public Optional<String> question() {
return value("question");
}
public Optional<String> generation() {
return value("generation");
}
public List<String> documents() {
return (List<String>) value("documents").orElse(emptyList());
}

}

private final String openApiKey;
private final ChromaEmbeddingStore chroma = new ChromaEmbeddingStore(
"http://localhost:8000",
"rag-chroma",
Duration.ofMinutes(2) );
private final OpenAiEmbeddingModel embeddingModel;

public AdaptiveRag( String openApiKey ) {
this.openApiKey = openApiKey;

this.embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(openApiKey)
.build();

}

private EmbeddingSearchResult<TextSegment> retrieverSearch( String question ) {

Embedding queryEmbedding = embeddingModel.embed(question).content();

EmbeddingSearchRequest query = EmbeddingSearchRequest.builder()
.queryEmbedding( queryEmbedding )
.maxResults( 1 )
.minScore( 0.0 )
.build();
return chroma.search( query );

}

/**
* Retrieve documents
* @param state
* @return
*/
public Map<String,Object> retrieve( State state ) {

String question = state.question()
.orElseThrow( () -> new IllegalStateException( "question is null!" ) );

EmbeddingSearchResult<TextSegment> relevant = retrieverSearch( question );

List<String> documents = relevant.matches().stream()
.map( m -> m.embedded().text() )
.collect(Collectors.toList());

return mapOf( "documents", documents , "question", question );
}

public interface RagService {

@UserMessage("You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\n" +
"Question: {{question}} \n" +
"Context: {{context}} \n" +
"Answer:")
String invoke(@V("question") String question, @V("context") List<String> context );
}

/**
* Generate answer
*
* @param state
* @return
*/
public Map<String,Object> generate( State state ) {
String question = state.question()
.orElseThrow( () -> new IllegalStateException( "question is null!" ) );
List<String> documents = state.documents();

ChatLanguageModel chatLanguageModel = OpenAiChatModel.builder()
.apiKey( openApiKey )
.modelName( "gpt-3.5-turbo" )
.timeout(Duration.ofMinutes(2))
.logRequests(true)
.logResponses(true)
.maxRetries(2)
.temperature(0.0)
.maxTokens(2000)
.build();

RagService service = AiServices.create(RagService.class, chatLanguageModel);

String generation = service.invoke( question, documents ); // service

return mapOf("generation", generation);
}

/**
* Determines whether the retrieved documents are relevant to the question.
* @param state
* @return
*/
public Map<String,Object> gradeDocuments( State state ) {

String question = state.question()
.orElseThrow( () -> new IllegalStateException( "question is null!" ) );
List<String> documents = state.documents();

final RetrievalGrader grader = RetrievalGrader.of( openApiKey );

List<String> filteredDocs = documents.stream()
.filter( d -> {
var score = grader.apply( new RetrievalGrader.Arguments(question, d ));
return score.binaryScore.equals("yes");
})
.collect(Collectors.toList());

return mapOf( "documents", filteredDocs);
}

/**
* Transform the query to produce a better question.
* @param state
* @return
*/
public Map<String,Object> transformQuery( State state ) {
String question = state.question()
.orElseThrow( () -> new IllegalStateException( "question is null!" ) );
List<String> documents = state.documents();

String betterQuestion = QuestionRewriter.of( openApiKey ).apply( question );

return mapOf( "question", betterQuestion );
}

/**
* Web search based on the re-phrased question.
* @param state
* @return
*/
public Map<String,Object> webSearch( State state ) {
String question = state.question()
.orElseThrow( () -> new IllegalStateException( "question is null!" ) );

return mapOf();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
package dev.langchain4j.adaptiverag;

import dev.langchain4j.DotEnvConfig;
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.openai.OpenAiEmbeddingModel;
import dev.langchain4j.rag.content.Content;
import dev.langchain4j.store.embedding.EmbeddingMatch;
import dev.langchain4j.store.embedding.EmbeddingSearchRequest;
import dev.langchain4j.store.embedding.EmbeddingSearchResult;
import dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;

import java.io.FileInputStream;
import java.time.Duration;
import java.util.List;
import java.util.logging.LogManager;

import static org.junit.jupiter.api.Assertions.assertEquals;

public class AdaptiveRagTest {

@BeforeAll
public static void beforeAll() throws Exception {
FileInputStream configFile = new FileInputStream("logging.properties");
LogManager.getLogManager().readConfiguration(configFile);

DotEnvConfig.load();


}

@Test
public void QuestionRewriterTest() {
String openApiKey = DotEnvConfig.valueOf("OPENAI_API_KEY")
.orElseThrow( () -> new IllegalArgumentException("no APIKEY provided!"));

String result = QuestionRewriter.of(openApiKey).apply("agent memory");
assertEquals("What is the role of memory in an agent's functioning?", result);
}

@Test
public void RetrievalGraderTest() {

String openApiKey = DotEnvConfig.valueOf("OPENAI_API_KEY")
.orElseThrow( () -> new IllegalArgumentException("no APIKEY provided!"));

RetrievalGrader grader = RetrievalGrader.of(openApiKey);

ChromaEmbeddingStore chroma = new ChromaEmbeddingStore(
"http://localhost:8000",
"rag-chroma",
Duration.ofMinutes(2) );
OpenAiEmbeddingModel embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(openApiKey)
.build();

String question = "agent memory";
Embedding queryEmbedding = embeddingModel.embed(question).content();

EmbeddingSearchRequest query = EmbeddingSearchRequest.builder()
.queryEmbedding( queryEmbedding )
.maxResults( 1 )
.minScore( 0.0 )
.build();
EmbeddingSearchResult<TextSegment> relevant = chroma.search( query );

List<EmbeddingMatch<TextSegment>> matches = relevant.matches();

assertEquals( 1, matches.size() );

RetrievalGrader.DocumentScore answer =
grader.apply( new RetrievalGrader.Arguments(question, matches.get(0).embedded().text()));

assertEquals( "no", answer.binaryScore);


}

@Test
public void WebSearchTest() {

String tavilyApiKey = DotEnvConfig.valueOf("TAVILY_API_KEY")
.orElseThrow( () -> new IllegalArgumentException("no APIKEY provided!"));

WebSearchTool webSearchTool = WebSearchTool.of(tavilyApiKey);
List<Content> webSearchResults = webSearchTool.apply("agent memory");

System.out.println( webSearchResults );

}

}

0 comments on commit 16a0aef

Please sign in to comment.