Benchmark Dataset and Graph-Aware Few-Shot In-Context Learning for SQL2Tex
python assemble.py --dataset <cosql|spider|sparc> --method <icl-top|icl-cluster|random|BM25|zero> --model <GCN|SAGE|GAT> --num_examples <number of demonstrations>
Input files will be created in the ./input
directory
accelerate launch --main_process_port <PORT> --num_processes <NUM_GPUs> prompt.py --input_csv <assembed file path> --limit <how many prompts to run> --model_name <gpt-j-6b|mistral-7B|codellama-7b>
Results will be logged in EXPERIMENTS.txt
file
@inproceedings{al-lawati-etal-2025-semantic,
title = "Semantic Captioning: Benchmark Dataset and Graph-Aware Few-Shot In-Context Learning for {SQL}2{T}ext",
author = "Al Lawati, Ali and
Lucas, Jason and
Mitra, Prasenjit",
year = "2025",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
pages = "8026--8042"
}