Skip to content

This paper introduces Aicyber’s system for the Dimensional Sentiment Analysis of Chinese Words in IALP 2016 Shared task

Notifications You must be signed in to change notification settings

StevenLOL/ialp2016_Shared_Task

Repository files navigation

ialp2016_Shared_Task

Here is the system for following paper, downoad the code and data , one could reproduce all the results.

Aicyber’s System for [IALP 2016 Shared Task](http://nlp.innobic.yzu.edu.tw/tasks/ dsa_w/): Character-enhanced Word Vectors and Boosted Neural Networks

For paper and final test results please refer to the files in paper folder.

#Prerequisites

##Scikit-learn Install the latest scikit-learn. This will provide most of the regressors and machine learning utilities.

##xgboost Install the xgboost via:

sudo pip install xgboost

#Evaluations

##Table 1: Features VS LSVR baseline

python table_1_LSVR.py

Sample output, after 3 rounds of 10 folds cross-validation, the 'MAE', 0.936 is the first value in the Table 1:

w2v_100_CB
load from cache
(0, 'MAE', 0.95422037820373351, 'PCC', 0.72929625905287654, 0.24031305313110352, 'Wed Sep 14 11:41:14 2016', 'Train sahpe:', (1486, 100), 'eval sahpe:', (166, 100))
(1, 'MAE', 0.88660967155777792, 'PCC', 0.79691459045767477, 0.22659897804260254, 'Wed Sep 14 11:41:14 2016', 'Train sahpe:', (1486, 100), 'eval sahpe:', (166, 100))
(2, 'MAE', 0.92380137358766068, 'PCC', 0.73167313941310941, 0.23987698554992676, 'Wed Sep 14 11:41:15 2016', 'Train sahpe:', (1487, 100), 'eval sahpe:', (165, 100))
(3, 'MAE', 0.97292950366904318, 'PCC', 0.72487931346684542, 0.24808311462402344, 'Wed Sep 14 11:41:15 2016', 'Train sahpe:', (1487, 100), 'eval sahpe:', (165, 100))
(4, 'MAE', 0.91984530597533742, 'PCC', 0.78713717096390567, 0.2524690628051758, 'Wed Sep 14 11:41:15 2016', 'Train sahpe:', (1487, 100), 'eval sahpe:', (165, 100))
...
...
('###', 'w2v_100_CB', 'MAE', 0.93628075980941383, 'PCC', 0.75431909093171989)
...
...

##Table 2: Features VS BNN

python ./table_2_BNN.py

##Table 3: LSVR, BNN VS NN GBM XGB

python ./table_3_NN.py
python ./table_3_GBM.py
python ./table_3_XGB.py

##Table 4: PCA100 BNN VS BNN_Norm

python ./table_4_PCA100_BNN.py
python ./table_4_PCA100_BNN_Norm.py

About

This paper introduces Aicyber’s system for the Dimensional Sentiment Analysis of Chinese Words in IALP 2016 Shared task

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published