Codebase for NAACL 2025 (Findings) Paper: A Guide To Effectively Leveraging LLMs for Low-Resource Text Summarization: Data Augmentation and Semi-supervised Approaches
Run pip install -r requirements.txt
to install the necessary dependencies
Exps can be launched by the following two commands:
cd mixsumm; python -m src.trainval -e mixsumm -j 0 # for running MixSumm experiments
cd ppsl; python -m src.trainval -e ssl -j 0 # for running all PPSL experiments
You can tweak the hyperparameters in mixsumm/exp_configs/mixsumm_exps.py and ppsl/exp_configs/ppsl_exps.py to adjust the experiment settings.
If you find our work useful, please cite us:
@misc{sahu2025guideeffectivelyleveragingllms,
title={A Guide To Effectively Leveraging LLMs for Low-Resource Text Summarization: Data Augmentation and Semi-supervised Approaches},
author={Gaurav Sahu and Olga Vechtomova and Issam H. Laradji},
year={2025},
eprint={2407.07341},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.07341},
}
This codebase uses the https://github.com/HHousen/TransformerSum framework for training summarization models.