Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: added kwargs_fft to all fft operators #647

Merged
merged 1 commit into from
Feb 24, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 40 additions & 18 deletions pylops/signalprocessing/fft.py
Original file line number Diff line number Diff line change
@@ -37,6 +37,7 @@ def __init__(
ifftshift_before: bool = False,
fftshift_after: bool = False,
dtype: DTypeLike = "complex128",
**kwargs_fft,
) -> None:
super().__init__(
dims=dims,
@@ -54,6 +55,7 @@ def __init__(
f"numpy backend always returns complex128 dtype. To respect the passed dtype, data will be casted to {self.cdtype}."
)

self._kwargs_fft = kwargs_fft
self._norm_kwargs = {"norm": None} # equivalent to "backward" in Numpy/Scipy
if self.norm is _FFTNorms.ORTHO:
self._norm_kwargs["norm"] = "ortho"
@@ -74,14 +76,18 @@ def _matvec(self, x: NDArray) -> NDArray:
if not self.clinear:
x = ncp.real(x)
if self.real:
y = ncp.fft.rfft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = ncp.fft.rfft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
# Apply scaling to obtain a correct adjoint for this operator
y = ncp.swapaxes(y, -1, self.axis)
# y[..., 1 : 1 + (self.nfft - 1) // 2] *= ncp.sqrt(2)
y = inplace_multiply(ncp.sqrt(2), y, self.slice)
y = ncp.swapaxes(y, self.axis, -1)
else:
y = ncp.fft.fft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = ncp.fft.fft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.ONE_OVER_N:
y *= self._scale
if self.fftshift_after:
@@ -101,9 +107,13 @@ def _rmatvec(self, x: NDArray) -> NDArray:
# x[..., 1 : 1 + (self.nfft - 1) // 2] /= ncp.sqrt(2)
x = inplace_divide(ncp.sqrt(2), x, self.slice)
x = ncp.swapaxes(x, self.axis, -1)
y = ncp.fft.irfft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = ncp.fft.irfft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
else:
y = ncp.fft.ifft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = ncp.fft.ifft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.NONE:
y *= self._scale

@@ -139,6 +149,7 @@ def __init__(
ifftshift_before: bool = False,
fftshift_after: bool = False,
dtype: DTypeLike = "complex128",
**kwargs_fft,
) -> None:
super().__init__(
dims=dims,
@@ -152,6 +163,7 @@ def __init__(
dtype=dtype,
)

self._kwargs_fft = kwargs_fft
self._norm_kwargs = {"norm": None} # equivalent to "backward" in Numpy/Scipy
if self.norm is _FFTNorms.ORTHO:
self._norm_kwargs["norm"] = "ortho"
@@ -167,13 +179,17 @@ def _matvec(self, x: NDArray) -> NDArray:
if not self.clinear:
x = np.real(x)
if self.real:
y = scipy.fft.rfft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = scipy.fft.rfft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
# Apply scaling to obtain a correct adjoint for this operator
y = np.swapaxes(y, -1, self.axis)
y[..., 1 : 1 + (self.nfft - 1) // 2] *= np.sqrt(2)
y = np.swapaxes(y, self.axis, -1)
else:
y = scipy.fft.fft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = scipy.fft.fft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.ONE_OVER_N:
y *= self._scale
if self.fftshift_after:
@@ -190,9 +206,13 @@ def _rmatvec(self, x: NDArray) -> NDArray:
x = np.swapaxes(x, -1, self.axis)
x[..., 1 : 1 + (self.nfft - 1) // 2] /= np.sqrt(2)
x = np.swapaxes(x, self.axis, -1)
y = scipy.fft.irfft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = scipy.fft.irfft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
else:
y = scipy.fft.ifft(x, n=self.nfft, axis=self.axis, **self._norm_kwargs)
y = scipy.fft.ifft(
x, n=self.nfft, axis=self.axis, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.NONE:
y *= self._scale

@@ -227,7 +247,7 @@ def __init__(
ifftshift_before: bool = False,
fftshift_after: bool = False,
dtype: DTypeLike = "complex128",
**kwargs_fftw,
**kwargs_fft,
) -> None:
if np.dtype(dtype) == np.float16:
warnings.warn(
@@ -236,13 +256,13 @@ def __init__(
dtype = np.float32

for badop in ["ortho", "normalise_idft"]:
if badop in kwargs_fftw:
if badop in kwargs_fft:
if badop == "ortho" and norm == "ortho":
continue
warnings.warn(
f"FFTW option '{badop}' will be overwritten by norm={norm}"
)
del kwargs_fftw[badop]
del kwargs_fft[badop]

super().__init__(
dims=dims,
@@ -298,10 +318,10 @@ def __init__(
self._scale = 1.0 / self.nfft

self.fftplan = pyfftw.FFTW(
self.x, self.y, axes=(self.axis,), direction="FFTW_FORWARD", **kwargs_fftw
self.x, self.y, axes=(self.axis,), direction="FFTW_FORWARD", **kwargs_fft
)
self.ifftplan = pyfftw.FFTW(
self.y, self.x, axes=(self.axis,), direction="FFTW_BACKWARD", **kwargs_fftw
self.y, self.x, axes=(self.axis,), direction="FFTW_BACKWARD", **kwargs_fft
)

@reshaped
@@ -386,7 +406,7 @@ def FFT(
engine: str = "numpy",
dtype: DTypeLike = "complex128",
name: str = "F",
**kwargs_fftw,
**kwargs_fft,
) -> LinearOperator:
r"""One dimensional Fast-Fourier Transform.

@@ -479,9 +499,9 @@ def FFT(
.. versionadded:: 2.0.0

Name of operator (to be used by :func:`pylops.utils.describe.describe`)
**kwargs_fftw
Arbitrary keyword arguments
for :py:class:`pyfftw.FTTW`
**kwargs_fft
Arbitrary keyword arguments to be passed to the selected fft method


Attributes
----------
@@ -557,7 +577,7 @@ def FFT(
ifftshift_before=ifftshift_before,
fftshift_after=fftshift_after,
dtype=dtype,
**kwargs_fftw,
**kwargs_fft,
)
elif engine == "numpy" or (engine == "fftw" and pyfftw_message is not None):
if engine == "fftw" and pyfftw_message is not None:
@@ -572,6 +592,7 @@ def FFT(
ifftshift_before=ifftshift_before,
fftshift_after=fftshift_after,
dtype=dtype,
**kwargs_fft,
)
elif engine == "scipy":
f = _FFT_scipy(
@@ -584,6 +605,7 @@ def FFT(
ifftshift_before=ifftshift_before,
fftshift_after=fftshift_after,
dtype=dtype,
**kwargs_fft,
)
else:
raise NotImplementedError("engine must be numpy, fftw or scipy")
43 changes: 35 additions & 8 deletions pylops/signalprocessing/fft2d.py
Original file line number Diff line number Diff line change
@@ -30,6 +30,7 @@ def __init__(
ifftshift_before: bool = False,
fftshift_after: bool = False,
dtype: DTypeLike = "complex128",
**kwargs_fft,
) -> None:
super().__init__(
dims=dims,
@@ -56,6 +57,7 @@ def __init__(
self.f1, self.f2 = self.fs
del self.fs

self._kwargs_fft = kwargs_fft
self._norm_kwargs: Dict[str, Union[None, str]] = {
"norm": None
} # equivalent to "backward" in Numpy/Scipy
@@ -74,13 +76,17 @@ def _matvec(self, x):
if not self.clinear:
x = ncp.real(x)
if self.real:
y = ncp.fft.rfft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = ncp.fft.rfft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
# Apply scaling to obtain a correct adjoint for this operator
y = ncp.swapaxes(y, -1, self.axes[-1])
y[..., 1 : 1 + (self.nffts[-1] - 1) // 2] *= ncp.sqrt(2)
y = ncp.swapaxes(y, self.axes[-1], -1)
else:
y = ncp.fft.fft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = ncp.fft.fft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.ONE_OVER_N:
y *= self._scale
y = y.astype(self.cdtype)
@@ -99,9 +105,13 @@ def _rmatvec(self, x):
x = ncp.swapaxes(x, -1, self.axes[-1])
x[..., 1 : 1 + (self.nffts[-1] - 1) // 2] /= ncp.sqrt(2)
x = ncp.swapaxes(x, self.axes[-1], -1)
y = ncp.fft.irfft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = ncp.fft.irfft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
else:
y = ncp.fft.ifft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = ncp.fft.ifft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.NONE:
y *= self._scale
if self.nffts[0] > self.dims[self.axes[0]]:
@@ -137,6 +147,7 @@ def __init__(
ifftshift_before: bool = False,
fftshift_after: bool = False,
dtype: DTypeLike = "complex128",
**kwargs_fft,
) -> None:
super().__init__(
dims=dims,
@@ -159,6 +170,7 @@ def __init__(
self.f1, self.f2 = self.fs
del self.fs

self._kwargs_fft = kwargs_fft
self._norm_kwargs: Dict[str, Union[None, str]] = {
"norm": None
} # equivalent to "backward" in Numpy/Scipy
@@ -176,13 +188,17 @@ def _matvec(self, x):
if not self.clinear:
x = np.real(x)
if self.real:
y = scipy.fft.rfft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = scipy.fft.rfft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
# Apply scaling to obtain a correct adjoint for this operator
y = np.swapaxes(y, -1, self.axes[-1])
y[..., 1 : 1 + (self.nffts[-1] - 1) // 2] *= np.sqrt(2)
y = np.swapaxes(y, self.axes[-1], -1)
else:
y = scipy.fft.fft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = scipy.fft.fft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.ONE_OVER_N:
y *= self._scale
if self.fftshift_after.any():
@@ -199,9 +215,13 @@ def _rmatvec(self, x):
x = np.swapaxes(x, -1, self.axes[-1])
x[..., 1 : 1 + (self.nffts[-1] - 1) // 2] /= np.sqrt(2)
x = np.swapaxes(x, self.axes[-1], -1)
y = scipy.fft.irfft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = scipy.fft.irfft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
else:
y = scipy.fft.ifft2(x, s=self.nffts, axes=self.axes, **self._norm_kwargs)
y = scipy.fft.ifft2(
x, s=self.nffts, axes=self.axes, **self._norm_kwargs, **self._kwargs_fft
)
if self.norm is _FFTNorms.NONE:
y *= self._scale
y = np.take(y, range(self.dims[self.axes[0]]), axis=self.axes[0])
@@ -230,6 +250,7 @@ def FFT2D(
engine: str = "numpy",
dtype: DTypeLike = "complex128",
name: str = "F",
**kwargs_fft,
) -> LinearOperator:
r"""Two dimensional Fast-Fourier Transform.

@@ -328,6 +349,10 @@ def FFT2D(
.. versionadded:: 2.0.0

Name of operator (to be used by :func:`pylops.utils.describe.describe`)
**kwargs_fft
.. versionadded:: 2.5.0

Arbitrary keyword arguments to be passed to the selected fft method

Attributes
----------
@@ -409,6 +434,7 @@ def FFT2D(
ifftshift_before=ifftshift_before,
fftshift_after=fftshift_after,
dtype=dtype,
**kwargs_fft,
)
elif engine == "scipy":
f = _FFT2D_scipy(
@@ -421,6 +447,7 @@ def FFT2D(
ifftshift_before=ifftshift_before,
fftshift_after=fftshift_after,
dtype=dtype,
**kwargs_fft,
)
else:
raise NotImplementedError("engine must be numpy or scipy")
Loading