-
Notifications
You must be signed in to change notification settings - Fork 282
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
【Hackathon No.8】add hypot rfc #626
Merged
Merged
Changes from 2 commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# paddle.hypot设计文档 | ||
|
||
|API名称 | paddle.hypot | | ||
|---|----------------------------------| | ||
|提交作者<input type="checkbox" class="rowselector hidden"> | llyyxx0413 | | ||
|提交时间<input type="checkbox" class="rowselector hidden"> | 2023-09-14 | | ||
|版本号 | V1.0 | | ||
|依赖飞桨版本<input type="checkbox" class="rowselector hidden"> | develop | | ||
|文件名 | 20230914_api_design_for_hypot.md | | ||
|
||
|
||
# 一、概述 | ||
## 1、相关背景 | ||
|
||
`hypot` 函数实现直角三角形斜边长度求解的计算: | ||
|
||
$$ out= \sqrt{x^2 + y^2} $$ | ||
|
||
## 2、功能目标 | ||
|
||
为 Paddle 新增 `paddle.hypot` & `paddle.hypot_` 和 `Tensor.hypot` & `Tensor.hypot_`API,实现直角三角形斜边长度求解的计算。 | ||
|
||
## 3、意义 | ||
|
||
为 Paddle 新增 `paddle.hypot` & `paddle.hypot_` 和 `Tensor.hypot` & `Tensor.hypot_`API,实现直角三角形斜边长度求解的计算。 | ||
|
||
# 二、飞桨现状 | ||
|
||
对飞桨框架目前不支持此功能,可用其他API组合实现的此功能,代码如下; | ||
|
||
```Python | ||
import paddle | ||
import numpy as np | ||
|
||
a = paddle.randn([3, 4]) | ||
b = paddle.randn([3, 4]) | ||
|
||
out = (a.pow(2) + b.pow(2)).sqrt() | ||
|
||
print(out) | ||
``` | ||
|
||
# 三、业内方案调研 | ||
|
||
## 1. Numpy | ||
在Numpy中使用的API格式如下: | ||
`numpy.hypot(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])` | ||
给定直角三角形的直角边,返回其斜边 | ||
其中: | ||
`x1`, `x2`(array_like):直角三角形的直角边, 如果`x1.shape != x2.shape` 则`x1`与 `x2`的`shape`必须可以广播 | ||
`out`(ndarray): 接收结果的ndarray,如果为`None`, 则返回新的ndarray | ||
`where`, `casting`, `order`, `dtype`与Numpy 其他API保持一致。 | ||
|
||
实现代码如下: | ||
```c++ | ||
NPY_INPLACE double npy_hypot(double x, double y) | ||
{ | ||
#ifndef NPY_BLOCK_HYPOT | ||
return hypot(x, y); | ||
#else | ||
double yx; | ||
|
||
if (npy_isinf(x) || npy_isinf(y)) { | ||
return NPY_INFINITY; | ||
} | ||
|
||
if (npy_isnan(x) || npy_isnan(y)) { | ||
return NPY_NAN; | ||
} | ||
|
||
x = npy_fabs(x); | ||
y = npy_fabs(y); | ||
if (x < y) { | ||
double temp = x; | ||
x = y; | ||
y = temp; | ||
} | ||
if (x == 0.) { | ||
return 0.; | ||
} | ||
else { | ||
yx = y/x; | ||
return x*npy_sqrt(1.+yx*yx); | ||
} | ||
#endif | ||
} | ||
``` | ||
|
||
|
||
## 3. Pytorch | ||
|
||
在 Pytorch 中使用的 API 格式如下: | ||
|
||
`torch.hypot(input, other, *, out=None)` | ||
|
||
其中,`input` 和 `other` 为 `Tensor` 类型,是直角三角形的边。 | ||
|
||
实现代码如下: | ||
|
||
```c++ | ||
// cpu | ||
void hypot_kernel(TensorIteratorBase& iter) { | ||
AT_DISPATCH_FLOATING_TYPES_AND(kBFloat16, iter.dtype(), "hypot_cpu", [&]() { | ||
cpu_kernel_vec( | ||
iter, | ||
[=](scalar_t a, scalar_t b) -> scalar_t { | ||
return std::hypot(a, b); | ||
}, | ||
[=](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { | ||
return a.hypot(b); | ||
}); | ||
}); | ||
} | ||
|
||
Vectorized<T> hypot(const Vectorized<T> &b) const { | ||
Vectorized<T> ret; | ||
for (const auto i : c10::irange(size())) { | ||
ret[i] = std::hypot(values[i], b[i]); | ||
} | ||
return ret; | ||
} | ||
|
||
//gpu | ||
void hypot_kernel_cuda(TensorIteratorBase& iter) { | ||
AT_DISPATCH_FLOATING_TYPES_AND2( | ||
at::ScalarType::Half, at::ScalarType::BFloat16, | ||
iter.common_dtype(), "hypot_cuda", | ||
[&]() { | ||
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>( | ||
iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { | ||
return ::hypot(a, b); | ||
}); | ||
}); | ||
} | ||
|
||
``` | ||
|
||
```python | ||
|
||
//inpalce | ||
|
||
hypot_ = _make_inplace(hypot) | ||
def _make_inplace(fn): | ||
""" | ||
Given a function with out variant (i.e. using `out_wrapper()), it returns its in-place variant | ||
See https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-do-in-place-operations-work-in-pytorch | ||
""" | ||
|
||
# nb. We use the name of the first argument used in the unary references | ||
@wraps(fn) | ||
def _fn(a, *args, **kwargs): | ||
return fn(a, *args, out=a, **kwargs) | ||
|
||
inplace_name = f"{fn.__name__}_" | ||
_fn.__name__ = inplace_name | ||
_fn = register_decomposition(getattr(aten, inplace_name))(_fn) | ||
|
||
# We access the __all__ attribute of the module where fn is defined | ||
# There may be a cleaner way of doing this... | ||
from inspect import getmodule | ||
|
||
_all = getmodule(fn).__all__ # type: ignore[union-attr] | ||
if inplace_name not in _all: | ||
_all.append(inplace_name) | ||
return _fn | ||
``` | ||
|
||
|
||
# 四、对比分析 | ||
|
||
## 1. 不同框架API使用方式 | ||
|
||
### 1. Numpy | ||
|
||
```Python | ||
import numpy as np | ||
|
||
np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) | ||
>>>array([[ 5., 5., 5.], | ||
[ 5., 5., 5.], | ||
[ 5., 5., 5.]]) | ||
``` | ||
|
||
### 2. PyTorch | ||
|
||
```Python | ||
import torch | ||
|
||
a = torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0])) | ||
>>>tensor([5.0000, 5.6569, 6.4031]) | ||
``` | ||
|
||
|
||
上述框架从使用体验来说,差异不大,都是直接调用 API 即可。实现上`Numpy`倾向于公式实现,而`torch` 倾向于使用库。出于paddle 目前新增API现状,故采用组合的方式 为 Paddle 新增 `paddle.hypot` API。 | ||
|
||
# 五、设计思路与实现方案 | ||
|
||
## 命名与参数设计 | ||
|
||
<!-- 参考:[飞桨API 设计及命名规范](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/dev_guides/api_contributing_guides/api_design_guidelines_standard_cn.html) --> | ||
|
||
API设计为 `paddle.hypot(x, y, name)`。其中,`x`, `y` 为 `Tensor` 类型,是直角三角形的边,``paddle.hypot_(x)` 为 inplace 版本。`Tensor.hypot(p)` 为 Tensor 的方法版本。`Tensor.hypot_(x)` 为 Tensor 的 方法 inplace 版本。 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||
|
||
## API实现方案 | ||
|
||
采用现有 PYTHON API 组合实现,实现位置为 Paddle repo `python/paddle/tensor/math.py` 目录。并在 python/paddle/tensor/init.py 中,添加 `hypot` & `hypot_` API,以支持 `paddle.Tensor.hypot` & `paddle.Tensor.hypot_` 的调用方式 | ||
|
||
# 六、测试和验收的考量 | ||
|
||
<!-- 参考:[新增API 测试及验收规范](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/dev_guides/api_contributing_guides/api_accpetance_criteria_cn.html) --> | ||
|
||
可考虑一下场景: | ||
1. 常规场景:`x`, `y`为常规输入,比较其与numpy的输出精度差异 | ||
2. Broadcast场景: `x`, `y`形状可广播,比较输出shape是否为广播后输出以及形状; | ||
3. 0维场景,`x`, `y`为0维Tensor, 比较输出是否亦为0维Tensor | ||
|
||
# 七、可行性分析和排期规划 | ||
|
||
本 API 主要使用组合实现,难度不高,工期上能满足要求。 | ||
|
||
# 八、影响面 | ||
|
||
为独立新增API,对其他模块没有影响。 | ||
|
||
# 名词解释 | ||
|
||
# 附件及参考资料 |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
标号错误
2. Pytorch