Skip to content

Commit

Permalink
Merge branch 'master' into metaheac
Browse files Browse the repository at this point in the history
  • Loading branch information
frankwhzhang authored Jun 15, 2022
2 parents d774f05 + d10fd27 commit a8db48b
Show file tree
Hide file tree
Showing 41 changed files with 2,738 additions and 138 deletions.
2 changes: 2 additions & 0 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,8 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
| 排序 | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
| 排序 | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
| 排序 | [SIGN](models/rank/sign/)([文档](https://paddl7erec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
| 排序 | [IPRec](models/rank/iprec/)([文档](https://paddl7erec.readthedocs.io/en/latest/models/rank/iprec.html)) | - ||| >=2.1.0 | [SIGIR 2021][Package Recommendation with Intra- and Inter-Package Attention Networks](http://nlp.csai.tsinghua.edu.cn/~xrb/publications/SIGIR-21_IPRec.pdf) | 多任务 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
| 排序 | [FGCNN](models/rank/fgcnn/)| - ||| >=2.1.0 | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 多任务 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
| 多任务 | [PLE](models/multitask/ple/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
| 多任务 | [ESMM](models/multitask/esmm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
Expand Down
2 changes: 2 additions & 0 deletions README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,8 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
| Rank | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
| Rank | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
| Rank | [SIGN](models/rank/sign/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
| Rank | [FGCNN](models/rank/fgcnn/)| - ||| >=2.1.0 | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| Rank | [IPRec](models/rank/iprec/)([doc](https://paddl7erec.readthedocs.io/en/latest/models/rank/iprec.html)) | - ||| >=2.1.0 | [SIGIR 2021][Package Recommendation with Intra- and Inter-Package Attention Networks](http://nlp.csai.tsinghua.edu.cn/~xrb/publications/SIGIR-21_IPRec.pdf) |
| Multi-Task | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
| Multi-Task | [PLE](models/multitask/ple/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
| Multi-Task | [ESMM](models/multitask/esmm/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
Expand Down
Loading

0 comments on commit a8db48b

Please sign in to comment.