Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add mteb evaluation #8538

Merged
merged 5 commits into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions pipelines/examples/contrastive_training/mteb_evaluation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# MTEB基准评估
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

把meteb的代码和原始的evaluation目录进行合并,不单独开一个目录,结构参考:
image

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

在原evaluation下加了mteb目录

[MTEB](https://github.com/embeddings-benchmark/mteb)
是一个大规模文本嵌入基准,包含了丰富的向量评估任务和数据集,涉及多语言、多领域的向量检索。
本仓库主要面向其中的中英文的检索任务(Retrieval),并以SciFact数据集作为主要示例。

## 环境准备
通过Anaconda创建和配置环境:
```
conda create -n mteb_paddle python=3.8
conda activate mteb_paddle
```
安装相关包:
```
conda install paddlepaddle-gpu==2.6.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge
conda install nccl -c conda-forge
pip install paddlenlp==2.8.0
pip install mteb==1.12.13
```

## 模型评估
使用评估脚本`eval_mteb.py`:

- `base_model_name_or_path`: 模型名称或路径
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

把这个README.md和主readme进行融合,维护主readme即可

Copy link
Contributor Author

@cxa-unique cxa-unique Jun 5, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已与主README融合,并已测试过

- `output_folder`: 结果文件存储路径
- `task_name`:任务(数据集)名称,如SciFact
- `task_split`:测试查询集合,如test或dev
- `query_instruction`:查询前添加的提示文本,如'query: '或None
- `document_instruction`:文档前添加的提示文本,如'passage: '或None
- `pooling_method`:获取表示的方式,last表示取最后token,mean表示取平均,cls表示取`[CLS]`token \
- `max_seq_length`: 最大序列长度
- `eval_batch_size`: 模型预测的批次大小(单个GPU)
- `pad_token`:设置padding的token,可取unk_token、eos_token或pad_token
- `padding_side`:设置padding的位置,可取left或right
- `add_bos_token`:是否添加起始符,0表示不添加,1表示添加
- `add_eos_token`:是否添加结束符,0表示不添加,1表示添加

#### RepLLaMA向量检索模型
RepLLaMA的基础模型是LLaMA-2-7B,它在MS MARCO段落数据上进行了LoRA训练,模型参数开源在 [repllama-v1-7b-lora-passage](https://huggingface.co/castorini/repllama-v1-7b-lora-passage) 。
```
CUDA_VISIBLE_DEVICES=0 python eval_mteb.py \
--base_model_name_or_path castorini/repllama-v1-7b-lora-passage \
--output_folder en_results/repllama-v1-7b-lora-passage \
--task_name SciFact \
--task_split test \
--query_instruction 'query: ' \
--document_instruction 'passage: ' \
--pooling_method last \
--max_seq_length 512 \
--eval_batch_size 2 \
--pad_token unk_token \
--padding_side right \
--add_bos_token 0 \
--add_eos_token 1
```
结果文件保存在`en_results/repllama-v1-7b-lora-passage/SciFact/last/no_revision_available/SciFact.json`,包含以下类似的评估结果:
```
'ndcg_at_1': 0.63,
'ndcg_at_3': 0.71785,
'ndcg_at_5': 0.73735,
'ndcg_at_10': 0.75708,
'ndcg_at_20': 0.7664,
'ndcg_at_100': 0.77394,
'ndcg_at_1000': 0.7794
```

#### BGE向量检索模型
BGE的基础模型是类BERT模型,以 [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) 模型为例。
```
CUDA_VISIBLE_DEVICES=0 python eval_mteb.py \
--base_model_name_or_path BAAI/bge-large-en-v1.5 \
--output_folder en_results/bge-large-en-v1.5 \
--task_name SciFact \
--task_split test \
--document_instruction 'Represent this sentence for searching relevant passages: ' \
--pooling_method mean \
--max_seq_length 512 \
--eval_batch_size 32 \
--pad_token pad_token \
--padding_side right \
--add_bos_token 0 \
--add_eos_token 0
```
结果文件保存在`en_results/bge-large-en-v1.5/SciFact/mean/no_revision_available/SciFact.json`,包含以下类似的评估结果:
```
'ndcg_at_1': 0.64667,
'ndcg_at_3': 0.70359,
'ndcg_at_5': 0.7265,
'ndcg_at_10': 0.75675,
'ndcg_at_20': 0.76743,
'ndcg_at_100': 0.77511,
'ndcg_at_1000': 0.77939
```

## 参考文献
[1] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, Jimmy Lin: Fine-Tuning LLaMA for Multi-Stage Text Retrieval.

[2] Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighof: C-Pack: Packaged Resources To Advance General Chinese Embedding.
109 changes: 109 additions & 0 deletions pipelines/examples/contrastive_training/mteb_evaluation/eval_mteb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging

import mteb
from models import EncodeModel
from mteb import MTEB

from paddlenlp.transformers import AutoModel, AutoTokenizer


def get_model(peft_model_name, base_model_name):
if peft_model_name is not None:
raise NotImplementedError("PEFT model is not supported yet")
else:
base_model = AutoModel.from_pretrained(base_model_name)
return base_model


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_name_or_path", default="bge-large-en-v1.5", type=str)
parser.add_argument("--peft_model_name_or_path", default=None, type=str)
parser.add_argument("--output_folder", default="tmp", type=str)

parser.add_argument("--task_name", default="SciFact", type=str)
parser.add_argument(
"--task_split",
default="test",
help='Note that some datasets do not have "test", they only have "dev"',
type=str,
)

parser.add_argument("--query_instruction", default=None, help="add prefix instruction before query", type=str)
parser.add_argument(
"--document_instruction", default=None, help="add prefix instruction before document", type=str
)

parser.add_argument("--pooling_method", default="last", help="choose in [mean, last, cls]", type=str)
parser.add_argument("--max_seq_length", default=512, type=int)
parser.add_argument("--eval_batch_size", default=1, type=int)

parser.add_argument("--pad_token", default="unk_token", help="unk_token, eos_token or pad_token", type=str)
parser.add_argument("--padding_side", default="left", help="right or left", type=str)
parser.add_argument("--add_bos_token", default=0, help="1 means add token", type=int)
parser.add_argument("--add_eos_token", default=1, help="1 means add token", type=int)

return parser.parse_args()


if __name__ == "__main__":
args = get_args()

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger.info("Args: {}".format(args))

model = get_model(args.peft_model_name_or_path, args.base_model_name_or_path)

tokenizer = AutoTokenizer.from_pretrained(args.base_model_name_or_path)
assert hasattr(tokenizer, args.pad_token), f"Tokenizer does not have {args.pad_token} token"
token_dict = {"unk_token": tokenizer.unk_token, "eos_token": tokenizer.eos_token, "pad_token": tokenizer.pad_token}
tokenizer.pad_token = token_dict[args.pad_token]

assert args.padding_side in [
"right",
"left",
], f"padding_side should be either 'right' or 'left', but got {args.padding_side}"
assert not (
args.padding_side == "left" and args.pooling_method == "cls"
), "Padding 'left' is not supported for pooling method 'cls'"
tokenizer.padding_side = args.padding_side

assert args.add_bos_token in [0, 1], f"add_bos_token should be either 0 or 1, but got {args.add_bos_token}"
assert args.add_eos_token in [0, 1], f"add_eos_token should be either 0 or 1, but got {args.add_eos_token}"
tokenizer.add_bos_token = bool(args.add_bos_token)
tokenizer.add_eos_token = bool(args.add_eos_token)

encode_model = EncodeModel(
model=model,
tokenizer=tokenizer,
pooling_method=args.pooling_method,
query_instruction=args.query_instruction,
document_instruction=args.document_instruction,
eval_batch_size=args.eval_batch_size,
max_seq_length=args.max_seq_length,
)

logger.info("Ready to eval")
evaluation = MTEB(tasks=mteb.get_tasks(tasks=[args.task_name]))
# evaluation = MTEB(tasks=[args.task_name]) ## For older MTEB versions
evaluation.run(
encode_model,
output_folder=f"{args.output_folder}/{args.task_name}/{args.pooling_method}",
eval_splits=[args.task_split],
)
127 changes: 127 additions & 0 deletions pipelines/examples/contrastive_training/mteb_evaluation/models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Union

import numpy as np
import paddle
from tqdm import tqdm


class EncodeModel:
def __init__(
self,
model,
tokenizer,
pooling_method: str = "last",
query_instruction: str = None,
document_instruction: str = None,
eval_batch_size: int = 64,
max_seq_length: int = 512,
):
self.model = model
self.tokenizer = tokenizer
self.pooling_method = pooling_method
self.query_instruction = query_instruction
self.document_instruction = document_instruction
self.eval_batch_size = eval_batch_size
self.max_seq_length = max_seq_length

if paddle.device.is_compiled_with_cuda():
self.device = paddle.device.set_device("gpu")
else:
self.device = paddle.device.set_device("cpu")
self.model = self.model.to(self.device)

num_gpus = paddle.device.cuda.device_count()
if num_gpus > 1:
raise NotImplementedError("Multi-GPU is not supported yet.")

def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
"""
This function will be used to encode queries for retrieval task
if there is a instruction for queries, we will add it to the query text
"""
if self.query_instruction is not None:
input_texts = [f"{self.query_instruction}{query}" for query in queries]
else:
input_texts = queries
return self.encode(input_texts)

def encode_corpus(self, corpus: List[Union[Dict[str, str], str]], **kwargs) -> np.ndarray:
"""
This function will be used to encode corpus for retrieval task
if there is a instruction for docs, we will add it to the doc text
"""
if isinstance(corpus[0], dict):
if self.document_instruction is not None:
input_texts = [
"{}{} {}".format(self.document_instruction, doc.get("title", ""), doc["text"]).strip()
for doc in corpus
]
else:
input_texts = ["{} {}".format(doc.get("title", ""), doc["text"]).strip() for doc in corpus]
else:
if self.document_instruction is not None:
input_texts = [f"{self.document_instruction}{doc}" for doc in corpus]
else:
input_texts = corpus
return self.encode(input_texts)

@paddle.no_grad()
def encode(self, sentences: List[str], **kwargs) -> np.ndarray:
self.model.eval()
all_embeddings = []
for start_index in tqdm(range(0, len(sentences), self.eval_batch_size), desc="Batches"):
sentences_batch = sentences[start_index : start_index + self.eval_batch_size]

inputs = self.tokenizer(
sentences_batch,
padding=True,
truncation=True,
return_tensors="pd",
max_length=self.max_seq_length,
return_attention_mask=True,
)
outputs = self.model(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
return_dict=True,
output_hidden_states=True,
)
last_hidden_state = outputs.hidden_states[-1]

if self.pooling_method == "last":
if self.tokenizer.padding_side == "right":
sequence_lengths = inputs.attention_mask.sum(axis=1)
last_token_indices = sequence_lengths - 1
embeddings = last_hidden_state[paddle.arange(last_hidden_state.shape[0]), last_token_indices]
elif self.tokenizer.padding_side == "left":
embeddings = last_hidden_state[:, -1]
else:
raise NotImplementedError(f"Padding side {self.tokenizer.padding_side} not supported.")
elif self.pooling_method == "cls":
embeddings = last_hidden_state[:, 1]
elif self.pooling_method == "mean":
s = paddle.sum(last_hidden_state * inputs.attention_mask.unsqueeze(-1), axis=1)
d = inputs.attention_mask.sum(axis=1, keepdim=True)
embeddings = s / d
else:
raise NotImplementedError(f"Pooling method {self.pooling_method} not supported.")

embeddings = paddle.nn.functional.normalize(embeddings, p=2, axis=-1)

all_embeddings.append(embeddings.cpu().numpy().astype("float32"))

return np.concatenate(all_embeddings, axis=0)
Loading