-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update pose model by ppdetpose in controlnet to improve performance
- Loading branch information
Showing
14 changed files
with
4,729 additions
and
1 deletion.
There are no files selected for viewing
103 changes: 103 additions & 0 deletions
103
ppdiffusers/examples/controlnet/annotator/ppdet_hrnet/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
|
||
import cv2 | ||
import numpy as np | ||
import paddle | ||
import paddlehub as hub | ||
|
||
from . import util | ||
from .det_keypoint_unite_infer import PPDetPose | ||
|
||
|
||
def keypoint_to_openpose_kpts(coco_keypoints_list): | ||
# coco keypoints: [x1,y1,v1,...,xk,yk,vk] (k=17) | ||
# ['Nose', Leye', 'Reye', 'Lear', 'Rear', 'Lsho', 'Rsho', 'Lelb', | ||
# 'Relb', 'Lwri', 'Rwri', 'Lhip', 'Rhip', 'Lkne', 'Rkne', 'Lank', 'Rank'] | ||
# openpose keypoints: [y1,...,yk], [x1,...xk] (k=18, with Neck) | ||
# ['Nose', *'Neck'*, 'Rsho', 'Relb', 'Rwri', 'Lsho', 'Lelb', 'Lwri','Rhip', | ||
# 'Rkne', 'Rank', 'Lhip', 'Lkne', 'Lank', 'Reye', 'Leye', 'Rear', 'Lear'] | ||
indices = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3] | ||
openpose_kpts = [] | ||
for i in indices: | ||
openpose_kpts.append(coco_keypoints_list[i]) | ||
|
||
# Get 'Neck' keypoint by interpolating between 'Lsho' and 'Rsho' keypoints | ||
l_shoulder_index = 5 | ||
r_shoulder_index = 6 | ||
l_shoulder_keypoint = coco_keypoints_list[l_shoulder_index] | ||
r_shoulder_keypoint = coco_keypoints_list[r_shoulder_index] | ||
|
||
neck_keypoint_y = int((l_shoulder_keypoint[1] + r_shoulder_keypoint[1]) / 2.0) | ||
neck_keypoint_x = int((l_shoulder_keypoint[0] + r_shoulder_keypoint[0]) / 2.0) | ||
neck_keypoint = [neck_keypoint_x, neck_keypoint_y, min(l_shoulder_keypoint[2], r_shoulder_keypoint[2])] | ||
open_pose_neck_index = 1 | ||
openpose_kpts.insert(open_pose_neck_index, neck_keypoint) | ||
|
||
return openpose_kpts | ||
|
||
|
||
class PPDetDetector: | ||
def __init__(self): | ||
self.body_estimation = hub.Module(name="openpose_body_estimation") | ||
self.hand_estimation = hub.Module(name="openpose_hands_estimation") | ||
self.ppdetpose = PPDetPose() | ||
|
||
def __call__(self, oriImg, detect_resolution=512, hand=False): | ||
with paddle.no_grad(): | ||
img_scalarfactor = detect_resolution / min(oriImg.shape[:2]) | ||
result = self.ppdetpose_pred(oriImg) | ||
result["candidate"] = result["candidate"] * img_scalarfactor | ||
oriImg = cv2.resize(oriImg, (0, 0), fx=img_scalarfactor, fy=img_scalarfactor) | ||
canvas = oriImg.copy() | ||
canvas.fill(0) | ||
canvas = self.body_estimation.draw_pose(canvas, result["candidate"], result["subset"]) | ||
if hand: | ||
hands_list = util.hand_detect(result["candidate"], result["subset"], oriImg) | ||
all_hand_peaks = [] | ||
for x, y, w, is_left in hands_list: | ||
scale_search = [x * img_scalarfactor for x in [0.5, 1.0, 1.5, 2.0]] | ||
peaks = self.hand_estimation.hand_estimation( | ||
oriImg[y : y + w, x : x + w, ::-1], scale_search=scale_search | ||
) | ||
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x) | ||
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y) | ||
all_hand_peaks.append(peaks) | ||
canvas = util.draw_handpose(canvas, all_hand_peaks) | ||
|
||
return canvas, dict(candidate=result["candidate"].tolist(), subset=result["subset"].tolist()) | ||
|
||
def ppdetpose_pred(self, image, kpt_threshold=0.3): | ||
poseres = self.ppdetpose.ppdet_hrnet_infer(image) | ||
keypoints = poseres["keypoint"][0] | ||
num_kpts = len(keypoints) | ||
subset = np.ones((num_kpts, 20)) * -1 | ||
candidate = np.zeros((0, 4)) | ||
posnum = 0 | ||
for kptid, keypoint in enumerate(keypoints): | ||
openpose_kpts = keypoint_to_openpose_kpts(keypoint) | ||
for idx, item in enumerate(openpose_kpts): | ||
if item[2] > kpt_threshold: | ||
subset[kptid][idx] = posnum | ||
kpt = np.array( | ||
item | ||
+ [ | ||
posnum, | ||
] | ||
) | ||
candidate = np.vstack((candidate, kpt)) | ||
posnum += 1 | ||
return {"candidate": candidate, "subset": subset} |
273 changes: 273 additions & 0 deletions
273
ppdiffusers/examples/controlnet/annotator/ppdet_hrnet/benchmark_utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,273 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import logging | ||
import os | ||
from pathlib import Path | ||
|
||
import paddle | ||
import paddle.inference as paddle_infer | ||
|
||
CUR_DIR = os.path.dirname(os.path.abspath(__file__)) | ||
LOG_PATH_ROOT = f"{CUR_DIR}/../../output" | ||
|
||
|
||
class PaddleInferBenchmark(object): | ||
def __init__( | ||
self, | ||
config, | ||
model_info: dict = {}, | ||
data_info: dict = {}, | ||
perf_info: dict = {}, | ||
resource_info: dict = {}, | ||
**kwargs | ||
): | ||
""" | ||
Construct PaddleInferBenchmark Class to format logs. | ||
args: | ||
config(paddle.inference.Config): paddle inference config | ||
model_info(dict): basic model info | ||
{'model_name': 'resnet50' | ||
'precision': 'fp32'} | ||
data_info(dict): input data info | ||
{'batch_size': 1 | ||
'shape': '3,224,224' | ||
'data_num': 1000} | ||
perf_info(dict): performance result | ||
{'preprocess_time_s': 1.0 | ||
'inference_time_s': 2.0 | ||
'postprocess_time_s': 1.0 | ||
'total_time_s': 4.0} | ||
resource_info(dict): | ||
cpu and gpu resources | ||
{'cpu_rss': 100 | ||
'gpu_rss': 100 | ||
'gpu_util': 60} | ||
""" | ||
# PaddleInferBenchmark Log Version | ||
self.log_version = "1.0.3" | ||
|
||
# Paddle Version | ||
self.paddle_version = paddle.__version__ | ||
self.paddle_commit = paddle.__git_commit__ | ||
paddle_infer_info = paddle_infer.get_version() | ||
self.paddle_branch = paddle_infer_info.strip().split(": ")[-1] | ||
|
||
# model info | ||
self.model_info = model_info | ||
|
||
# data info | ||
self.data_info = data_info | ||
|
||
# perf info | ||
self.perf_info = perf_info | ||
|
||
try: | ||
# required value | ||
self.model_name = model_info["model_name"] | ||
self.precision = model_info["precision"] | ||
|
||
self.batch_size = data_info["batch_size"] | ||
self.shape = data_info["shape"] | ||
self.data_num = data_info["data_num"] | ||
|
||
self.inference_time_s = round(perf_info["inference_time_s"], 4) | ||
except: | ||
self.print_help() | ||
raise ValueError("Set argument wrong, please check input argument and its type") | ||
|
||
self.preprocess_time_s = perf_info.get("preprocess_time_s", 0) | ||
self.postprocess_time_s = perf_info.get("postprocess_time_s", 0) | ||
self.with_tracker = True if "tracking_time_s" in perf_info else False | ||
self.tracking_time_s = perf_info.get("tracking_time_s", 0) | ||
self.total_time_s = perf_info.get("total_time_s", 0) | ||
|
||
self.inference_time_s_90 = perf_info.get("inference_time_s_90", "") | ||
self.inference_time_s_99 = perf_info.get("inference_time_s_99", "") | ||
self.succ_rate = perf_info.get("succ_rate", "") | ||
self.qps = perf_info.get("qps", "") | ||
|
||
# conf info | ||
self.config_status = self.parse_config(config) | ||
|
||
# mem info | ||
if isinstance(resource_info, dict): | ||
self.cpu_rss_mb = int(resource_info.get("cpu_rss_mb", 0)) | ||
self.cpu_vms_mb = int(resource_info.get("cpu_vms_mb", 0)) | ||
self.cpu_shared_mb = int(resource_info.get("cpu_shared_mb", 0)) | ||
self.cpu_dirty_mb = int(resource_info.get("cpu_dirty_mb", 0)) | ||
self.cpu_util = round(resource_info.get("cpu_util", 0), 2) | ||
|
||
self.gpu_rss_mb = int(resource_info.get("gpu_rss_mb", 0)) | ||
self.gpu_util = round(resource_info.get("gpu_util", 0), 2) | ||
self.gpu_mem_util = round(resource_info.get("gpu_mem_util", 0), 2) | ||
else: | ||
self.cpu_rss_mb = 0 | ||
self.cpu_vms_mb = 0 | ||
self.cpu_shared_mb = 0 | ||
self.cpu_dirty_mb = 0 | ||
self.cpu_util = 0 | ||
|
||
self.gpu_rss_mb = 0 | ||
self.gpu_util = 0 | ||
self.gpu_mem_util = 0 | ||
|
||
# init benchmark logger | ||
self.benchmark_logger() | ||
|
||
def benchmark_logger(self): | ||
""" | ||
benchmark logger | ||
""" | ||
# remove other logging handler | ||
for handler in logging.root.handlers[:]: | ||
logging.root.removeHandler(handler) | ||
|
||
# Init logger | ||
FORMAT = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" | ||
log_output = f"{LOG_PATH_ROOT}/{self.model_name}.log" | ||
Path(f"{LOG_PATH_ROOT}").mkdir(parents=True, exist_ok=True) | ||
logging.basicConfig( | ||
level=logging.INFO, | ||
format=FORMAT, | ||
handlers=[ | ||
logging.FileHandler(filename=log_output, mode="w"), | ||
logging.StreamHandler(), | ||
], | ||
) | ||
self.logger = logging.getLogger(__name__) | ||
self.logger.info(f"Paddle Inference benchmark log will be saved to {log_output}") | ||
|
||
def parse_config(self, config) -> dict: | ||
""" | ||
parse paddle predictor config | ||
args: | ||
config(paddle.inference.Config): paddle inference config | ||
return: | ||
config_status(dict): dict style config info | ||
""" | ||
if isinstance(config, paddle_infer.Config): | ||
config_status = {} | ||
config_status["runtime_device"] = "gpu" if config.use_gpu() else "cpu" | ||
config_status["ir_optim"] = config.ir_optim() | ||
config_status["enable_tensorrt"] = config.tensorrt_engine_enabled() | ||
config_status["precision"] = self.precision | ||
config_status["enable_mkldnn"] = config.mkldnn_enabled() | ||
config_status["cpu_math_library_num_threads"] = config.cpu_math_library_num_threads() | ||
elif isinstance(config, dict): | ||
config_status["runtime_device"] = config.get("runtime_device", "") | ||
config_status["ir_optim"] = config.get("ir_optim", "") | ||
config_status["enable_tensorrt"] = config.get("enable_tensorrt", "") | ||
config_status["precision"] = config.get("precision", "") | ||
config_status["enable_mkldnn"] = config.get("enable_mkldnn", "") | ||
config_status["cpu_math_library_num_threads"] = config.get("cpu_math_library_num_threads", "") | ||
else: | ||
self.print_help() | ||
raise ValueError("Set argument config wrong, please check input argument and its type") | ||
return config_status | ||
|
||
def report(self, identifier=None): | ||
""" | ||
print log report | ||
args: | ||
identifier(string): identify log | ||
""" | ||
if identifier: | ||
identifier = f"[{identifier}]" | ||
else: | ||
identifier = "" | ||
|
||
self.logger.info("\n") | ||
self.logger.info("---------------------- Paddle info ----------------------") | ||
self.logger.info(f"{identifier} paddle_version: {self.paddle_version}") | ||
self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}") | ||
self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}") | ||
self.logger.info(f"{identifier} log_api_version: {self.log_version}") | ||
self.logger.info("----------------------- Conf info -----------------------") | ||
self.logger.info(f"{identifier} runtime_device: {self.config_status['runtime_device']}") | ||
self.logger.info(f"{identifier} ir_optim: {self.config_status['ir_optim']}") | ||
self.logger.info(f"{identifier} enable_memory_optim: {True}") | ||
self.logger.info(f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}") | ||
self.logger.info(f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}") | ||
self.logger.info( | ||
f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}" | ||
) | ||
self.logger.info("----------------------- Model info ----------------------") | ||
self.logger.info(f"{identifier} model_name: {self.model_name}") | ||
self.logger.info(f"{identifier} precision: {self.precision}") | ||
self.logger.info("----------------------- Data info -----------------------") | ||
self.logger.info(f"{identifier} batch_size: {self.batch_size}") | ||
self.logger.info(f"{identifier} input_shape: {self.shape}") | ||
self.logger.info(f"{identifier} data_num: {self.data_num}") | ||
self.logger.info("----------------------- Perf info -----------------------") | ||
self.logger.info( | ||
f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, cpu_vms: {self.cpu_vms_mb}, cpu_shared_mb: {self.cpu_shared_mb}, cpu_dirty_mb: {self.cpu_dirty_mb}, cpu_util: {self.cpu_util}%" | ||
) | ||
self.logger.info( | ||
f"{identifier} gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%, gpu_mem_util: {self.gpu_mem_util}%" | ||
) | ||
self.logger.info(f"{identifier} total time spent(s): {self.total_time_s}") | ||
|
||
if self.with_tracker: | ||
self.logger.info( | ||
f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, " | ||
f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, " | ||
f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}, " | ||
f"tracking_time(ms): {round(self.tracking_time_s*1000, 1)}" | ||
) | ||
else: | ||
self.logger.info( | ||
f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, " | ||
f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, " | ||
f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}" | ||
) | ||
if self.inference_time_s_90: | ||
self.looger.info( | ||
f"{identifier} 90%_cost: {self.inference_time_s_90}, 99%_cost: {self.inference_time_s_99}, succ_rate: {self.succ_rate}" | ||
) | ||
if self.qps: | ||
self.logger.info(f"{identifier} QPS: {self.qps}") | ||
|
||
def print_help(self): | ||
""" | ||
print function help | ||
""" | ||
print( | ||
"""Usage: | ||
==== Print inference benchmark logs. ==== | ||
config = paddle.inference.Config() | ||
model_info = {'model_name': 'resnet50' | ||
'precision': 'fp32'} | ||
data_info = {'batch_size': 1 | ||
'shape': '3,224,224' | ||
'data_num': 1000} | ||
perf_info = {'preprocess_time_s': 1.0 | ||
'inference_time_s': 2.0 | ||
'postprocess_time_s': 1.0 | ||
'total_time_s': 4.0} | ||
resource_info = {'cpu_rss_mb': 100 | ||
'gpu_rss_mb': 100 | ||
'gpu_util': 60} | ||
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info) | ||
log('Test') | ||
""" | ||
) | ||
|
||
def __call__(self, identifier=None): | ||
""" | ||
__call__ | ||
args: | ||
identifier(string): identify log | ||
""" | ||
self.report(identifier) |
Oops, something went wrong.