-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NEW MODEL CLIP] Add disco diffusion clip vitb32 (#3072)
* add clip model * update params name * add docs * typo * update clip and add clip+dd * add vision_heads and vision_mlp_ratio * typo and update docs * update default args and add resnet 50 101 and use old pillow * add resnet50 101 and update tokenizer * update seed * add __init__.py * add openai/clip-vit-large-patch14 and update imagegeneration demo * update attention mask and update copyright * add stable diffusion and docs & add CLIPTextModel and CLIPVisionModel * del clip.vision_model * update PNDMScheduler and add set_scheduler * update copyright order
- Loading branch information
Showing
30 changed files
with
11,280 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Feature extractor class for CLIP.""" | ||
|
||
from typing import List, Optional, Union | ||
|
||
import paddle | ||
import numpy as np | ||
from PIL import Image | ||
|
||
from ..feature_extraction_utils import BatchFeature | ||
from ..tokenizer_utils_base import TensorType | ||
from ..image_utils import ImageFeatureExtractionMixin | ||
|
||
__all__ = ["CLIPFeatureExtractor"] | ||
|
||
|
||
class CLIPFeatureExtractor(ImageFeatureExtractionMixin): | ||
r""" | ||
Constructs a CLIP feature extractor. | ||
This feature extractor inherits from [`ImageFeatureExtractionMixin`] which contains most of the main methods. Users | ||
should refer to this superclass for more information regarding those methods. | ||
Args: | ||
do_resize (`bool`, *optional*, defaults to `True`): | ||
Whether to resize the input to a certain `size`. | ||
size (`int`, *optional*, defaults to 224): | ||
Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. | ||
resample (`int`, *optional*, defaults to `PIL.Image.BICUBIC`): | ||
An optional resampling filter. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BOX`, | ||
`PIL.Image.BILINEAR`, `PIL.Image.HAMMING`, `PIL.Image.BICUBIC` or `PIL.Image.LANCZOS`. Only has an effect | ||
if `do_resize` is set to `True`. | ||
do_center_crop (`bool`, *optional*, defaults to `True`): | ||
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the | ||
image is padded with 0's and then center cropped. | ||
crop_size (`int`, *optional*, defaults to 224): | ||
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. | ||
do_normalize (`bool`, *optional*, defaults to `True`): | ||
Whether or not to normalize the input with `image_mean` and `image_std`. | ||
image_mean (`List[int]`, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | ||
The sequence of means for each channel, to be used when normalizing images. | ||
image_std (`List[int]`, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | ||
The sequence of standard deviations for each channel, to be used when normalizing images. | ||
convert_rgb (`bool`, defaults to `True`): | ||
Whether or not to convert `PIL.Image.Image` into `RGB` format | ||
""" | ||
|
||
model_input_names = ["pixel_values"] | ||
|
||
def __init__(self, | ||
do_resize=True, | ||
size=224, | ||
resample=Image.BICUBIC, | ||
do_center_crop=True, | ||
crop_size=224, | ||
do_normalize=True, | ||
image_mean=None, | ||
image_std=None, | ||
do_convert_rgb=True, | ||
**kwargs): | ||
super().__init__() | ||
self.do_resize = do_resize | ||
self.size = size | ||
self.resample = resample | ||
self.do_center_crop = do_center_crop | ||
self.crop_size = crop_size | ||
self.do_normalize = do_normalize | ||
self.image_mean = image_mean if image_mean is not None else [ | ||
0.48145466, 0.4578275, 0.40821073 | ||
] | ||
self.image_std = image_std if image_std is not None else [ | ||
0.26862954, 0.26130258, 0.27577711 | ||
] | ||
self.do_convert_rgb = do_convert_rgb | ||
|
||
def __call__( | ||
self, | ||
images: Union[Image.Image, np.ndarray, "paddle.Tensor", | ||
List[Image.Image], List[np.ndarray], | ||
List["paddle.Tensor"] # noqa | ||
], | ||
return_tensors: Optional[Union[str, TensorType]] = None, | ||
**kwargs): | ||
""" | ||
Main method to prepare for the model one or several image(s). | ||
<Tip warning={true}> | ||
NumPy arrays and Paddle tensors are converted to PIL images when resizing, so the most efficient is to pass | ||
PIL images. | ||
</Tip> | ||
Args: | ||
images (`PIL.Image.Image`, `np.ndarray`, `paddle.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[paddle.Tensor]`): | ||
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or Paddle | ||
tensor. In case of a NumPy array/Paddle tensor, each image should be of shape (C, H, W), where C is a | ||
number of channels, H and W are image height and width. | ||
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`): | ||
If set, will return tensors of a particular framework. Acceptable values are: | ||
- `'pd'`: Return Paddle `paddle.Tensor` objects. | ||
- `'np'`: Return NumPy `np.ndarray` objects. | ||
Returns: | ||
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | ||
- **pixel_values** -- Pixel values to be fed to a model. | ||
""" | ||
# Input type checking for clearer error | ||
valid_images = False | ||
|
||
# Check that images has a valid type | ||
if isinstance(images, | ||
(Image.Image, np.ndarray)) or paddle.is_tensor(images): | ||
valid_images = True | ||
elif isinstance(images, (list, tuple)): | ||
if len(images) == 0 or isinstance( | ||
images[0], | ||
(Image.Image, np.ndarray)) or paddle.is_tensor(images[0]): | ||
valid_images = True | ||
|
||
if not valid_images: | ||
raise ValueError( | ||
"Images must of type `PIL.Image.Image`, `np.ndarray` or `paddle.Tensor` (single example), " | ||
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[paddle.Tensor]` (batch of examples)." | ||
) | ||
|
||
is_batched = bool( | ||
isinstance(images, (list, tuple)) | ||
and (isinstance(images[0], (Image.Image, np.ndarray)) | ||
or paddle.is_tensor(images[0]))) | ||
|
||
if not is_batched: | ||
images = [images] | ||
|
||
# transformations (convert rgb + resizing + center cropping + normalization) | ||
if self.do_convert_rgb: | ||
images = [self.convert_rgb(image) for image in images] | ||
if self.do_resize and self.size is not None and self.resample is not None: | ||
images = [ | ||
self.resize(image=image, | ||
size=self.size, | ||
resample=self.resample, | ||
default_to_square=False) for image in images | ||
] | ||
if self.do_center_crop and self.crop_size is not None: | ||
images = [ | ||
self.center_crop(image, self.crop_size) for image in images | ||
] | ||
if self.do_normalize: | ||
images = [ | ||
self.normalize(image=image, | ||
mean=self.image_mean, | ||
std=self.image_std) for image in images | ||
] | ||
|
||
# return as BatchFeature | ||
data = {"pixel_values": images} | ||
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) | ||
|
||
return encoded_inputs |
Oops, something went wrong.