Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Prim][PIR] Forward decomp the kldiv_loss op #66510

Merged
merged 3 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
"index_sample",
"index_select",
"instance_norm",
"kldiv_loss",
"layer_norm",
"leaky_relu",
"lerp",
Expand Down Expand Up @@ -87,6 +88,7 @@
"index_sample",
"index_select",
"instance_norm",
"kldiv_loss",
"layer_norm",
"leaky_relu",
"lerp",
Expand Down
41 changes: 41 additions & 0 deletions paddle/fluid/primitive/composite/composite.h
Original file line number Diff line number Diff line change
Expand Up @@ -1555,6 +1555,47 @@ Tensor log_loss_decomp(const Tensor& input,
return term1 - term2;
}

template <typename T>
Tensor kldiv_loss_decomp(const Tensor& x,
const Tensor& label,
const std::string& reduction,
bool log_target) {
bool dynamic_shape = has_dynamic_shape(x.shape());
Tensor loss;
if (log_target) {
loss = exp<T>(label) * (label - x);
} else {
Tensor output = label * (log<T>(label) - x);
Tensor zero = full_scalar<T>(0.0, label.dtype());
Tensor zeros;
if (dynamic_shape) {
zeros = backend::full_with_tensor<T>(shape<T>(x), 0, x.dtype());
} else {
zeros = full<T>(x.shape(), 0, x.dtype());
}
loss = where<T>(label > zero, output, zeros);
}

if (reduction == "batchmean") {
if (x.shape().size() > 0) {
if (dynamic_shape) {
return sum<T>(loss) / get_slice<T>(shape<T>(x), 0);
} else {
return sum<T>(loss) / x.shape()[0];
}
} else {
return sum<T>(loss);
}
}
if (reduction == "mean") {
return mean_decomp<T>(loss, {}, false);
}
if (reduction == "sum") {
return sum<T>(loss);
}
return loss;
}

template <typename T>
Tensor softsign_decomp(const Tensor& x) {
// softsign = x / (1 + abs(x))
Expand Down
12 changes: 10 additions & 2 deletions test/legacy_test/test_kldiv_loss_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,8 @@ def setUp(self):
self.initTestCase()
self.op_type = 'kldiv_loss'
self.python_api = kl_div
self.prim_op_type = "comp"
self.public_python_api = paddle.nn.functional.kl_div
x = np.random.uniform(-10, 10, self.x_shape).astype('float64')
target = np.random.uniform(-10, 10, self.x_shape).astype('float64')

Expand All @@ -62,10 +64,16 @@ def setUp(self):
self.outputs = {'Loss': loss.astype('float64')}

def test_check_output(self):
self.check_output(check_pir=True)
self.check_output(check_pir=True, check_prim_pir=True)

def test_check_grad(self):
self.check_grad(['X'], 'Loss', no_grad_set={"Target"}, check_pir=True)
self.check_grad(
['X'],
'Loss',
no_grad_set={"Target"},
check_pir=True,
check_prim_pir=True,
)

def initTestCase(self):
self.x_shape = (4, 5, 5)
Expand Down
63 changes: 63 additions & 0 deletions test/prim/pir_prim/test_prim_sub_graph_dynamic_shape.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,18 @@ def log_loss_net(inputs, labels):
return paddle.nn.functional.log_loss(inputs, labels)


def kldiv_loss_net1(x, target):
return paddle.nn.functional.kl_div(x, target, "batchmean", False)


def kldiv_loss_net2(x, target):
return paddle.nn.functional.kl_div(x, target, "none", False)


def kldiv_loss_net3(x, target):
return paddle.nn.functional.kl_div(x, target, "batchmean", True)


class TestPrimBase(unittest.TestCase):
def setUp(self):
np.random.seed(2023)
Expand Down Expand Up @@ -808,5 +820,56 @@ def setUp(self):
self.tol = 1e-5


class TestPrimKLDivLoss1(TestPrimTwo):
def setUp(self):
np.random.seed(2023)
self.shape_x = [40, 20, 50]
self.shape_y = [40, 20, 50]
self.dtype_x = "float32"
self.dtype_y = "float32"
self.init_x_shape = [None, None, 50]
self.init_y_shape = [None, None, 50]
self.x = np.random.uniform(-10, 10, self.shape_x).astype(self.dtype_x)
self.y = np.random.uniform(-10, 10, self.shape_y).astype(self.dtype_y)
self.net = kldiv_loss_net1
self.necessary_ops = "pd_op.kldiv_loss"
self.enable_cinn = False
self.tol = 1e-6


class TestPrimKLDivLoss2(TestPrimTwo):
def setUp(self):
np.random.seed(2023)
self.shape_x = [40, 20, 50]
self.shape_y = [40, 20, 50]
self.dtype_x = "float32"
self.dtype_y = "float32"
self.init_x_shape = [None, None, 50]
self.init_y_shape = [None, None, 50]
self.x = np.random.uniform(-10, 10, self.shape_x).astype(self.dtype_x)
self.y = np.random.uniform(-10, 10, self.shape_y).astype(self.dtype_y)
self.net = kldiv_loss_net2
self.necessary_ops = "pd_op.kldiv_loss"
self.enable_cinn = False
self.tol = 1e-4


class TestPrimKLDivLoss3(TestPrimTwo):
def setUp(self):
np.random.seed(2023)
self.shape_x = [40, 20, 50]
self.shape_y = [40, 20, 50]
self.dtype_x = "float32"
self.dtype_y = "float32"
self.init_x_shape = [None, None, 50]
self.init_y_shape = [None, None, 50]
self.x = np.random.uniform(-10, 10, self.shape_x).astype(self.dtype_x)
self.y = np.random.uniform(-10, 10, self.shape_y).astype(self.dtype_y)
self.net = kldiv_loss_net3
self.necessary_ops = "pd_op.kldiv_loss"
self.enable_cinn = False
self.tol = 1e-6


if __name__ == "__main__":
unittest.main()