Skip to content

Commit

Permalink
Fix
Browse files Browse the repository at this point in the history
  • Loading branch information
co63oc committed Jun 23, 2024
1 parent f4d837f commit a6f31c1
Show file tree
Hide file tree
Showing 8 changed files with 64 additions and 935 deletions.
562 changes: 0 additions & 562 deletions paddle/fluid/operators/fused/resnet_basic_block_op.cc

This file was deleted.

38 changes: 0 additions & 38 deletions paddle/phi/ops/yaml/backward.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2529,44 +2529,6 @@
func : repeat_interleave_with_tensor_index_grad
data_type : x

- backward_op : resnet_basic_block_grad
forward: resnet_basic_block(Tensor x, Tensor filter1, Tensor scale1, Tensor bias1, Tensor mean1, Tensor
var1, Tensor filter2, Tensor scale2, Tensor bias2, Tensor mean2, Tensor var2,
Tensor filter3, Tensor scale3, Tensor bias3, Tensor mean3, Tensor var3, int stride1
= 1, int stride2 = 1, int stride3 = 1, int padding1 = 0, int padding2 = 0, int
padding3 = 0, int dilation1 = 1, int dilation2 = 1, int dilation3 = 1, int group
= 1, float momentum = 0.9, float epsilon = 1e-5, str data_format = "NCHW", bool
has_shortcut = false, bool use_global_stats = false, bool is_test = false, bool
trainable_statistics = false, str act_type = "relu", bool find_conv_input_max
= true) -> Tensor (out), Tensor (conv1), Tensor (saved_mean1), Tensor (saved_invstd1),
Tensor (mean1_out), Tensor (var1_out), Tensor (conv2), Tensor (conv2_input), Tensor
(saved_mean2), Tensor (saved_invstd2), Tensor (mean2_out), Tensor (var2_out),
Tensor (conv3), Tensor (saved_mean3), Tensor (saved_invstd3), Tensor (mean3_out),
Tensor (var3_out), Tensor (max_input1), Tensor (max_filter1), Tensor (max_input2),
Tensor (max_filter2), Tensor (max_input3), Tensor (max_filter3)
args: (Tensor x, Tensor filter1, Tensor conv1, Tensor scale1, Tensor bias1, Tensor saved_mean1, Tensor
saved_invstd1, Tensor filter2, Tensor conv2, Tensor conv2_input, Tensor scale2, Tensor bias2, Tensor saved_mean2, Tensor saved_invstd2,
Tensor filter3, Tensor conv3, Tensor scale3, Tensor bias3, Tensor saved_mean3, Tensor saved_invstd3,
Tensor max_input1, Tensor max_filter1, Tensor max_input2, Tensor max_filter2,
Tensor max_input3, Tensor max_filter3,
Tensor out, Tensor out_grad,
int stride1 = 1, int stride2 = 1, int stride3 = 1, int padding1 = 0, int padding2 = 0, int
padding3 = 0, int dilation1 = 1, int dilation2 = 1, int dilation3 = 1, int group
= 1, float momentum = 0.9, float epsilon = 1e-5, str data_format = "NCHW", bool
has_shortcut = false, bool use_global_stats = false, bool is_test = false, bool
trainable_statistics = false, str act_type = "relu", bool find_conv_input_max
= true)
output: Tensor (x_grad), Tensor (filter1_grad), Tensor (scale1_grad), Tensor (bias1_grad),
Tensor (filter2_grad), Tensor (scale2_grad), Tensor (bias2_grad),
Tensor (filter3_grad), Tensor (scale3_grad), Tensor (bias3_grad)
infer_meta:
func: ResnetBasicBlockGradInferMeta
param: [x, filter1, scale1, filter2, scale2, filter3, scale3, has_shortcut]
kernel:
func: resnet_basic_block_grad
data_type: x
optional: filter3, conv3, scale3, bias3, saved_mean3, saved_invstd3

- backward_op : reverse_grad
forward : reverse (Tensor x, IntArray axis) -> Tensor(out)
args : (Tensor out_grad, IntArray axis)
Expand Down
1 change: 0 additions & 1 deletion paddle/phi/ops/yaml/legacy/backward_exclude.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -48,4 +48,3 @@
- tril_grad
- triu_grad
- unpool_grad
- resnet_basic_block_grad
1 change: 0 additions & 1 deletion paddle/phi/ops/yaml/legacy/ops_exclude.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -93,4 +93,3 @@
- unpool
- zeros
- zeros_like
- resnet_basic_block
38 changes: 38 additions & 0 deletions paddle/phi/ops/yaml/legacy/static_backward.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -300,6 +300,44 @@
func : prod_grad
composite: prod_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)

- backward_op : resnet_basic_block_grad
forward: resnet_basic_block(Tensor x, Tensor filter1, Tensor scale1, Tensor bias1, Tensor mean1, Tensor
var1, Tensor filter2, Tensor scale2, Tensor bias2, Tensor mean2, Tensor var2,
Tensor filter3, Tensor scale3, Tensor bias3, Tensor mean3, Tensor var3, int stride1
= 1, int stride2 = 1, int stride3 = 1, int padding1 = 0, int padding2 = 0, int
padding3 = 0, int dilation1 = 1, int dilation2 = 1, int dilation3 = 1, int group
= 1, float momentum = 0.9, float epsilon = 1e-5, str data_format = "NCHW", bool
has_shortcut = false, bool use_global_stats = false, bool is_test = false, bool
trainable_statistics = false, str act_type = "relu", bool find_conv_input_max
= true) -> Tensor (out), Tensor (conv1), Tensor (saved_mean1), Tensor (saved_invstd1),
Tensor (mean1_out), Tensor (var1_out), Tensor (conv2), Tensor (conv2_input), Tensor
(saved_mean2), Tensor (saved_invstd2), Tensor (mean2_out), Tensor (var2_out),
Tensor (conv3), Tensor (saved_mean3), Tensor (saved_invstd3), Tensor (mean3_out),
Tensor (var3_out), Tensor (max_input1), Tensor (max_filter1), Tensor (max_input2),
Tensor (max_filter2), Tensor (max_input3), Tensor (max_filter3)
args: (Tensor x, Tensor filter1, Tensor conv1, Tensor scale1, Tensor bias1, Tensor saved_mean1, Tensor
saved_invstd1, Tensor filter2, Tensor conv2, Tensor conv2_input, Tensor scale2, Tensor bias2, Tensor saved_mean2, Tensor saved_invstd2,
Tensor filter3, Tensor conv3, Tensor scale3, Tensor bias3, Tensor saved_mean3, Tensor saved_invstd3,
Tensor max_input1, Tensor max_filter1, Tensor max_input2, Tensor max_filter2,
Tensor max_input3, Tensor max_filter3,
Tensor out, Tensor out_grad,
int stride1 = 1, int stride2 = 1, int stride3 = 1, int padding1 = 0, int padding2 = 0, int
padding3 = 0, int dilation1 = 1, int dilation2 = 1, int dilation3 = 1, int group
= 1, float momentum = 0.9, float epsilon = 1e-5, str data_format = "NCHW", bool
has_shortcut = false, bool use_global_stats = false, bool is_test = false, bool
trainable_statistics = false, str act_type = "relu", bool find_conv_input_max
= true)
output: Tensor (x_grad), Tensor (filter1_grad), Tensor (scale1_grad), Tensor (bias1_grad),
Tensor (filter2_grad), Tensor (scale2_grad), Tensor (bias2_grad),
Tensor (filter3_grad), Tensor (scale3_grad), Tensor (bias3_grad)
infer_meta:
func: ResnetBasicBlockGradInferMeta
param: [x, filter1, scale1, filter2, scale2, filter3, scale3, has_shortcut]
kernel:
func: resnet_basic_block_grad
data_type: x
optional: filter3, conv3, scale3, bias3, saved_mean3, saved_invstd3

- backward_op : rnn_grad
forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, float dropout_prob=0.0, bool is_bidirec=false, int input_size=10, int hidden_size=100, int num_layers=1, str mode="RNN_TANH", int seed=0, bool is_test=false) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
Expand Down
26 changes: 26 additions & 0 deletions paddle/phi/ops/yaml/legacy/static_ops.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -635,6 +635,32 @@
func : remainder
inplace : (x -> out)

- op : resnet_basic_block
args: (Tensor x, Tensor filter1, Tensor scale1, Tensor bias1, Tensor mean1, Tensor
var1, Tensor filter2, Tensor scale2, Tensor bias2, Tensor mean2, Tensor var2,
Tensor filter3, Tensor scale3, Tensor bias3, Tensor mean3, Tensor var3, int stride1
= 1, int stride2 = 1, int stride3 = 1, int padding1 = 0, int padding2 = 0, int
padding3 = 0, int dilation1 = 1, int dilation2 = 1, int dilation3 = 1, int group
= 1, float momentum = 0.9, float epsilon = 1e-5, str data_format = "NCHW", bool
has_shortcut = false, bool use_global_stats = false, bool is_test = false, bool
trainable_statistics = false, str act_type = "relu", bool find_conv_input_max
= true)
output: Tensor (out), Tensor (conv1), Tensor (saved_mean1), Tensor (saved_invstd1),
Tensor (mean1_out), Tensor (var1_out), Tensor (conv2), Tensor (conv2_input), Tensor
(saved_mean2), Tensor (saved_invstd2), Tensor (mean2_out), Tensor (var2_out),
Tensor (conv3), Tensor (saved_mean3), Tensor (saved_invstd3), Tensor (mean3_out),
Tensor (var3_out), Tensor (max_input1), Tensor (max_filter1), Tensor (max_input2),
Tensor (max_filter2), Tensor (max_input3), Tensor (max_filter3)
infer_meta:
func: ResnetBasicBlockInferMeta
kernel:
func: resnet_basic_block
data_type: x
optional: filter3, scale3, bias3, mean3, var3, conv3, saved_mean3, saved_invstd3,
mean3_out, var3_out, max_input1, max_filter1, max_input2, max_filter2, max_input3,
max_filter3
backward: resnet_basic_block_grad

- op : rnn
args: (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, float dropout_prob=0.0, bool is_bidirec=false, int input_size=10, int hidden_size=100, int num_layers=1, str mode="RNN_TANH", int seed=0, bool is_test=false)
output: Tensor(out), Tensor(dropout_state_out), Tensor[](state){pre_state.size()}, Tensor(reserve)
Expand Down
26 changes: 0 additions & 26 deletions paddle/phi/ops/yaml/ops.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3640,32 +3640,6 @@
data_type : x
backward: repeat_interleave_with_tensor_index_grad

- op : resnet_basic_block
args: (Tensor x, Tensor filter1, Tensor scale1, Tensor bias1, Tensor mean1, Tensor
var1, Tensor filter2, Tensor scale2, Tensor bias2, Tensor mean2, Tensor var2,
Tensor filter3, Tensor scale3, Tensor bias3, Tensor mean3, Tensor var3, int stride1
= 1, int stride2 = 1, int stride3 = 1, int padding1 = 0, int padding2 = 0, int
padding3 = 0, int dilation1 = 1, int dilation2 = 1, int dilation3 = 1, int group
= 1, float momentum = 0.9, float epsilon = 1e-5, str data_format = "NCHW", bool
has_shortcut = false, bool use_global_stats = false, bool is_test = false, bool
trainable_statistics = false, str act_type = "relu", bool find_conv_input_max
= true)
output: Tensor (out), Tensor (conv1), Tensor (saved_mean1), Tensor (saved_invstd1),
Tensor (mean1_out), Tensor (var1_out), Tensor (conv2), Tensor (conv2_input), Tensor
(saved_mean2), Tensor (saved_invstd2), Tensor (mean2_out), Tensor (var2_out),
Tensor (conv3), Tensor (saved_mean3), Tensor (saved_invstd3), Tensor (mean3_out),
Tensor (var3_out), Tensor (max_input1), Tensor (max_filter1), Tensor (max_input2),
Tensor (max_filter2), Tensor (max_input3), Tensor (max_filter3)
infer_meta:
func: ResnetBasicBlockInferMeta
kernel:
func: resnet_basic_block
data_type: x
optional: filter3, scale3, bias3, mean3, var3, conv3, saved_mean3, saved_invstd3,
mean3_out, var3_out, max_input1, max_filter1, max_input2, max_filter2, max_input3,
max_filter3
backward: resnet_basic_block_grad

- op : reverse
args : (Tensor x, IntArray axis)
output : Tensor
Expand Down
Loading

0 comments on commit a6f31c1

Please sign in to comment.