The code is tested under the following environment:
- Ubuntu 16.04 LTS
- Python 3.6
- Pytorch 1.8.0
- CUDA 11.1
- GCC 7.3
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install scikit-image
git clone https://github.com/OceanSense/MAVN.git
cd MAVN
# if you didn't create the conda environment before:
conda create -y -n MAVN python=3.6
conda activate MAVN
pip install -e .
If you have problem in openGL, please see [Trouble Shooting]
To make the comparison fair, we pre-generated some data points, which we used in our paper, please see dataset dir. Google Drive
cd MAVN
wget https://drive.google.com/drive/folders/1xYzl5zBYOfTE2ouSIKgp6ZgrQ7lZEe7X?usp=sharing
python demo.py -n1 --auto_gpu_config 1 --total_num_scenes 1 --task_config ./config/CommonGoal_two_locobot.yaml
Release CollaVN V2 and method code
Our code is heavily based on iGibson. Thanks iGibson Development Team for their awesome codebase.