Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Some revisions #7

Merged
merged 16 commits into from
Feb 18, 2025
154 changes: 105 additions & 49 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,31 @@
# ProximalGalerkin

Examples of the proximal Galerkin finite element method.
This repository contains implementations of the proximal Galerkin finite element method and other proximal numerical methods for variational problems with inequality constraints derived in

```bibtex
@misc{dokken2025latent,
title={The latent variable proximal point algorithm for variational problems with constraints},
author={Dokken, {J\o rgen} S. and Farrell, Patrick~E. and Keith, Brendan and Papadopoulos, Ioannis~P.A. and Surowiec, Thomas~M.},
year={2025},
}
```

Please cite the aforementioned manuscript if using the code in this repository.

## Instructions

We encourage using following Docker containers to run the codes described below:

- DOLFINx: [ghcr.io/methods-group/proximalgalerkin-dolfinx:main](https://github.com/METHODS-Group/ProximalGalerkin/pkgs/container/proximalgalerkin-dolfinx)
- MFEM: [ghcr.io/methods-group/proximalgalerkin-mfem:main](https://github.com/METHODS-Group/ProximalGalerkin/pkgs/container/proximalgalerkin-mfem)
- Firedrake: [ghcr.io/methods-group/proximalgalerkin-firedrake:main](https://github.com/METHODS-Group/ProximalGalerkin/pkgs/container/proximalgalerkin-firedrake)
- Julia/GridAP: [julia:1.10.8](https://hub.docker.com/layers/library/julia/1.10.8/images/sha256-66656909ed7b5e75f4208631b01fc585372f906d68353d97cc06b40a8028c437)

<a name="obstacle"></a>

## Table of Examples and Figures

The following table associates each implementation to the examples and figures in the paper. Further information to run the codes is provided for each specific example.

| Figure | File: examples/ | Backend | Instructions |
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thinking about the table, should we just remove the File: examples/ column, or rename it to Example folder:, and point to the folder instead of a file? We could also move the descriptions into each individual folder, with a README, making the landing page slimmer.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

All of these good ideas are fine with me

| :----: | :-------------------------------------------------------------------------------------------: | :--------------: | -------------------------------- |
Expand All @@ -15,25 +40,14 @@ Examples of the proximal Galerkin finite element method.
| 8 | ? | Firedrake | |
| 9 | ? | Firedrake | |
| 10 | [harmonic_maps/harmonic_1d.py](./examples/harmonic_maps/harmonic_1d.py) | FEniCS | [Harmonic map](#harmonic) |
| 11 | [eikonal/ex40.cpp](./examples/eikonal/ex40.cpp) | MFEM | [Eikonal](#eikonal) |
| 11 | [eikonal/ex40.cpp](./examples/eikonal/ex40.cpp) | MFEM/FEniCS | [Eikonal](#eikonal) |
| 12 | [monge_ampere/cg_cg_dg.py](./examples/monge_ampere/cg_cg_dg.py) | Firedrake/FEniCS | [Monge-Ampere](#monge) |

## Installation
## Example 1 (Figure 2): The Obstacle Problem

We provide several docker container for the various methods used in the paper
Figures 2 (a) and (b) are generated with `DOLFINx`.

- DOLFINx: [ghcr.io/methods-group/proximalgalerkin-dolfinx:main](https://github.com/METHODS-Group/ProximalGalerkin/pkgs/container/proximalgalerkin-dolfinx)
- MFEM: [ghcr.io/methods-group/proximalgalerkin-mfem:main](https://github.com/METHODS-Group/ProximalGalerkin/pkgs/container/proximalgalerkin-mfem)
- Firedrake: [ghcr.io/methods-group/proximalgalerkin-firedrake:main](https://github.com/METHODS-Group/ProximalGalerkin/pkgs/container/proximalgalerkin-firedrake)
- Julia/GridAP: [julia:1.10.8](https://hub.docker.com/layers/library/julia/1.10.8/images/sha256-66656909ed7b5e75f4208631b01fc585372f906d68353d97cc06b40a8028c437)

<a name="obstacle"></a>

# Obstacle problem

Parts of this table is generated using DOLFINx.

To get the results from Galahad, IPOPT, SNES and LVPP (FEM) use the LVPP docker image for DOLFINx and run (within `examples/obstacle`)
To reproduce the results in Figures 2 (a) (the comparison between Proximal Galerkin, SNES, Galahad, and IPOPT), first deploy the `DOLFINx` Docker container. Then run the following commands within `examples/obstacle`:

```bash
python3 generate_mesh_gmsh.py
Expand All @@ -42,44 +56,45 @@ python3 compare_all.py -P ./meshes/disk_2.xdmf -O medium
python3 compare_all.py -P ./meshes/disk_3.xdmf -O fine
```

Julia is used to get results for the finite difference and spectral element method, use the `julia:1.10.8` Docker container and call
To reproduce the finite difference and spectral element method results in Figure 2 (c), deploy the `julia:1.10.8` Docker container and call

```bash
julia finite_difference.jl
julia spectral.jl
```

<a name="signorini"></a>
within `examples/obstacle`.

# Signorini problem
<a name="signorini"></a>

Requires DOLFINx and [scifem](https://github.com/scientificcomputing/scifem). These are installed in the docker image.
## Example 2 (Figure 3): The Signorini Problem

From within `examples/signorini`, call
Deploy the `DOLFINx` Docker container to reproduce the results in this example.
Then call

```bash
python3 generate_mesh.py
```

to generate the mesh file `"meshes/half_sphere.xdmf"`.
Next run the LVPP algorithm with
from within `examples/signorini` to generate the mesh file `"meshes/half_sphere.xdmf"`.
Next, run the proximal Galerkin method with

```bash
python3 run_lvpp_problem.py --alpha_0=0.005 --degree=2 --disp=-0.3 --n-max-iterations=250 --alpha_scheme=doubling --output output_lvpp file --filename=meshes/half_sphere.xdmf
```

<a name="fracture"></a>

# Fracture
## Example 3 (Figure 4): Variational Fracture

Can be simulated with either FEniCS/DOLFINx or Firedrake.
The DOLFINx code can be executed with
This example can be run from within `examples/fracture` using both the `DOLFINx` and the `Firedrake` Docker containers.
The `DOLFINx` code can be executed with

```bash
python3 script.py
```

while the Firedrake code can be executed with:
while the `Firedrake` code can be executed with:

> [!WARNING]
> Add instructions
Expand All @@ -90,65 +105,96 @@ while the Firedrake code can be executed with:

<a name="ch"></a>

# Cahn-Hilliard problem
## Example 4 (Figure 5): Four-Phase Cahn–Hilliard Gradient Flow

Codes can run from within `examples/cahn-hilliard` with
To reproduce the results in this example, first deploy the `DOLFINx` Docker container.
Then run

```bash
python3 problem.py
```

from within `examples/cahn-hilliard`.

<a name="qvi"></a>

# Thermoforming quasi-variational inequalities
## Example 5 (Figure 6): Thermoforming Quasi-Variational Inequality

Requires Julia. Can be executed with
Reproducing the results in this example requires the `julia:1.10.8` Docker container.
Once this container is deployed, the code can be executed by running

```bash
julia theroforming_lvpp.jl
```

from the `examples/thermoforming_qvi` folder.
from within `examples/thermoforming_qvi`.

<a name="gradient"></a>

# Gradient constraint
## Example 6 (Figure 7): Gradient Norm Constraints

Run the `script.py` with the following input parameters:
Deploy the `DOLFINx` Docker container to reproduce the results in this example.
Then run `script.py` within `examples/gradient_constraint` with the following input parameters:

```bash
python3 script.py -N 80 -M 80 --alpha_scheme=doubling
```

<a name="harmonic"></a>

## Harmonic maps
## Example 7 (Figure 8): Eigenvalue Constraints

Deploy the `Firedrake` Docker container to reproduce the results in this example.
Then run the following command within `examples/[TODO]`:

> [!WARNING]
> Add instructions

## Example 8 (Figure 9): Intersections of Constraints

Requires DOLFINx. Run
Deploy the `Firedrake` Docker container to reproduce the results in this example.
Then run the following command within `examples/[TODO]`:

> [!WARNING]
> Add instructions

## Example 9 (Figure 10): Harmonic Maps to the Sphere

Deploy the `DOLFINx` Docker container to reproduce the results in this example.
Then run the following command within `examples/harmonic_maps`:

```bash
python3 harmonic_1D.py
```

## Eikonal equation
## Example 10: Linear Equality Constraints
Note that there is no numerical example for this setting because the derived variational formulation is equivalent to the standard Lagrange multiplier formulation for this class of problems.

## Example 11 (Figure 11): The Eikonal Equation

We have provided code for this example for both the `MFEM` and `DOLFINx` Docker containers.

The MFEM example can be executed by copying
[./examples/eikonal/ex40.cpp](./examples/eikonal/ex40.cpp) into the `mfem` examples folder
and call `make ex40`. It can then be executed with:
To reproduce the Möbius strip solution in Figure 11, you first need to copy [./examples/eikonal/ex40.cpp](./examples/eikonal/ex40.cpp) into the `MFEM` examples folder (`/home/euler/mfem/examples/`) and then calling `make ex40` and `./ex40 -step 10.0 -mi 10`. This following code will execute to entire process:

```bash
docker run -it --rm -v ./examples/eikonal:/home/euler/shared -w /home/euler/mfem --rm --entrypoint=/bin/bash ghcr.io/methods-group/proximalgalerkin-mfem:main
cp /home/euler/shared/ex40.cpp /home/euler/mfem/examples/
cd examples && make ex40
./ex40
./ex40 -step 10.0 -mi 10
```

For the non-manifold examples, with the [Star](https://github.com/mfem/mfem/blob/master/data/star.mesh)
and [Ball](https://github.com/mfem/mfem/blob/master/data/ball-nurbs.mesh) you can compile the [official demo](https://mfem.org/examples/), `ex40.cpp` or `ex40p.cpp` without copying any files from this repository.

The DOLFINx example, in [./examples/eikonal/script.py](./examples/eikonal/script.py) requires to convert the mobius strip mesh from `mfem`, called [mobius-strip.mesh](https://github.com/mfem/mfem/blob/master/data/mobius-strip.mesh)
To reproduce the results in Figure 11 for the two geometries (i.e., the [Star](https://github.com/mfem/mfem/blob/master/data/star.mesh)
and [Ball](https://github.com/mfem/mfem/blob/master/data/ball-nurbs.mesh)), you should compile the [official examples](https://mfem.org/examples/) `ex40.cpp` or `ex40p.cpp` without copying any files from this repository
```bash
cd examples && make ex40
# Star Geometry
./ex40 -step 10.0 -mi 10
# Ball Geometry
./ex40 -step 10.0 -mi 10 -m ../data/ball-nurbs.mesh
```

From the root of the repository, you can call the following commands to compile the code
The `DOLFINx` implementation, found in [./examples/eikonal/script.py](./examples/eikonal/script.py) requires first converting the `MFEM` Möbius strip mesh [mobius-strip.mesh](https://github.com/mfem/mfem/blob/master/data/mobius-strip.mesh).
To this end, run the following commands from the root of this repository:

```bash
docker run -it --rm -v ./examples/eikonal:/home/euler/shared -w /home/euler/mfem --rm --entrypoint=/bin/bash ghcr.io/methods-group/proximalgalerkin-mfem:main
Expand All @@ -158,17 +204,27 @@ cd examples && make convert_mesh
cp -r mobius-strip.mesh/ ../../shared/
```

The `DOLFINx` code is then executed by calling:

```bash
python3 script.py
```

from within `examples/eikonal`.

<a name="monge"></a>

# Monge-Ampere
## Example 12 (Figure 12): The Monge–Ampere Equation

This example can be run from within `examples/monge_ampere` using both the `DOLFINx` and the `Firedrake` Docker containers.

The firedrake code can be run with
The `Firedrake` code can be run with the command

```bash
python3 cg_cg_dg.py
```

The equivalent FEniCS/DOLFINx code can be run with
The equivalent `DOLFINx` code can be run with

```bash
python3 cg_cg_dg_fenics.py
Expand Down
2 changes: 1 addition & 1 deletion examples/eikonal/ex40.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,7 @@ int main(int argc, char *argv[])
}

alpha *= max(growth_rate, 1_r);
alpha = min(alpha, 50.0);
alpha = min(alpha, 50_r);
neg_alpha_cf.constant = -alpha;
}

Expand Down
2 changes: 1 addition & 1 deletion examples/gradient_constraint/script.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,7 @@ def main(
element_options.add_argument(
"--latent_space",
type=str,
default="RT",
default="Lagrange",
choices=get_args(latent_spaces),
help="Finite element family for auxiliary variable",
)
Expand Down
24 changes: 9 additions & 15 deletions examples/monge_ampere/cg_cg_dg_fenics.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ def extract_num_dofs(V: dolfinx.fem.FunctionSpace):


errors = []
for i in range(4):
for j in range(3,15):
X = (x, y) = ufl.SpatialCoordinate(mesh)
gdim = mesh.geometry.dim

Expand All @@ -48,10 +48,10 @@ def hessian(u):
rho = ufl.det(hessian(u_exact)) # forcing term
g = u_exact # boundary data

k = 6
k = j
el_V = basix.ufl.element("Lagrange", mesh.basix_cell(), k)
el_U = basix.ufl.element("Lagrange", mesh.basix_cell(), k + 1, shape=(gdim,))
el_W = basix.ufl.element("Discontinuous Lagrange", mesh.basix_cell(), k, shape=(3,))
el_W = basix.ufl.element("Lagrange", mesh.basix_cell(), k, shape=(3,))
me = basix.ufl.mixed_element([el_V, el_U, el_W])
Z = dolfinx.fem.functionspace(mesh, me)

Expand Down Expand Up @@ -163,21 +163,15 @@ def hessian(u):
global_error = np.sqrt(mesh.comm.allreduce(local_error, op=MPI.SUM))
errors.append(global_error)

skew = 0.5 * (psi - psi.T)
skew_psi = ufl.inner(skew, skew) * dx
skew_local = dolfinx.fem.assemble_scalar(dolfinx.fem.form(skew_psi))
skew_global = np.sqrt(mesh.comm.allreduce(skew_local, op=MPI.SUM))
print("||skew(psi)||_L2: ", skew_global, flush=True)

with dolfinx.io.VTXWriter(mesh.comm, f"output/solution_{i}.bp", [z.sub(0).collapse()]) as vtx:
with dolfinx.io.VTXWriter(mesh.comm, f"output/solution_{j}.bp", [z.sub(0).collapse()]) as vtx:
vtx.write(0.0)

mesh, _, _ = dolfinx.mesh.refine(mesh)

# mesh, _, _ = dolfinx.mesh.refine(mesh)

def convergence_orders(x):
return np.log2(np.array(x)[:-1] / np.array(x)[1:])

# Not relevant for p-refinement
# def convergence_orders(x):
# return np.log2(np.array(x)[:-1] / np.array(x)[1:])

print("Errors", errors, flush=True)
print("Convergence orders: ", convergence_orders(errors), flush=True)
# print("Convergence orders: ", convergence_orders(errors), flush=True)
2 changes: 1 addition & 1 deletion examples/obstacle/compare_all.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
Solve obstacle problem with DOLFINx (LVPP), Galahad and IPOPT and compare the results
Solve obstacle problem with Proximal Galerkin, Galahad, and IPOPT and compare the results

Author: Jørgen S. Dokken
SPDX-License-Identifier: MIT
Expand Down
11 changes: 4 additions & 7 deletions examples/obstacle/lvpp_example.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,17 @@
"""

Obstacle problem based of example 3 (P3) in Hintermüller and Kunisch [1].
Obstacle problem based on experiment 4 in [2].

FEniCSx code solve this problem is based of the paper [2,3]:
The FEniCSx code solve this problem is based on [3]:

SPXD License: MIT License

Original license file [../../licenses/LICENSE.surowiec](../../licenses/LICENSE.surowiec)
is included in the repository.

[1] Hintermüller, M. and Kunisch K., Path-following Methods for a Class of
Constrained Minimization Problems in Function Space, SIAM Journal on Optimization 2006,
https://doi.org/10.1137/040611598
[2] Keith, B. and Surowiec, T.M., Proximal Galerkin: A Structure-Preserving Finite Element Method
[1] Keith, B. and Surowiec, T.M., Proximal Galerkin: A Structure-Preserving Finite Element Method
for Pointwise Bound Constraints. Found Comput Math (2024). https://doi.org/10.1007/s10208-024-09681-8
[3] Keith, B., Surowiec, T. M., & Dokken, J. S. (2023). Examples for the Proximal Galerkin Method
[2] Keith, B., Surowiec, T. M., & Dokken, J. S. (2023). Examples for the Proximal Galerkin Method
(Version 0.1.0) [Computer software]. https://github.com/thomas-surowiec/proximal-galerkin-examples
"""

Expand Down
Loading