Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a method to allocate zeroed slices #17

Merged
merged 1 commit into from
Jul 24, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions src/allocation.rs
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,44 @@ pub fn zeroed_box<T: Zeroable>() -> Box<T> {
try_zeroed_box().unwrap()
}

/// Allocates a `Box<[T]>` with all contents being zeroed out.
///
/// This uses the global allocator to create a zeroed allocation and _then_
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
/// won't be put temporarily on the stack. You can make a box of any size
/// without fear of a stack overflow.
///
/// ## Failure
///
/// This fails if the allocation fails.
#[inline]
pub fn try_zeroed_slice_box<T: Pod>(length: usize) -> Result<Box<[T]>, ()> {
if size_of::<T>() == 0 {
// This will not allocate but simple create a dangling slice pointer.
let mut vec = Vec::with_capacity(length);
vec.resize(length, T::zeroed());
return Ok(vec.into_boxed_slice());
}
if length == 0 {
// This will also not allocate.
return Ok(Vec::new().into_boxed_slice());
}
// For Pod types, the layout of the array/slice is equivalent to repeating the type.
let layout_length = size_of::<T>().checked_mul(length).ok_or(())?;
assert!(layout_length != 0);
let layout =
Layout::from_size_align(layout_length, align_of::<T>()).map_err(|_| ())?;
let ptr = unsafe { alloc_zeroed(layout) };
if ptr.is_null() {
// we don't know what the error is because `alloc_zeroed` is a dumb API
Err(())
} else {
let slice =
unsafe { core::slice::from_raw_parts_mut(ptr as *mut T, length) };
Ok(unsafe { Box::<[T]>::from_raw(slice) })
}
}

/// As [`try_cast_vec`](try_cast_vec), but unwraps for you.
#[inline]
pub fn cast_vec<A: Pod, B: Pod>(input: Vec<A>) -> Vec<B> {
Expand Down