-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
312 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
@article{ho2024pixelmomentsultrahighresolutionunpaired, | ||
title={Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization}, | ||
author={Ming-Yang Ho and Che-Ming Wu and Min-Sheng Wu and Yufeng Jane Tseng}, | ||
year={2024}, | ||
eprint={2407.04245}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.CV}, | ||
url={https://arxiv.org/abs/2407.04245}, | ||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
<script src="http://www.google.com/jsapi" type="text/javascript"></script> | ||
<script type="text/javascript">google.load("jquery", "1.3.2");</script> | ||
|
||
<style type="text/css"> | ||
body { | ||
font-family: "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif; | ||
font-weight:300; | ||
font-size:18px; | ||
margin-left: auto; | ||
margin-right: auto; | ||
width: 1100px; | ||
} | ||
|
||
h1 { | ||
font-size:32px; | ||
font-weight:300; | ||
} | ||
|
||
.disclaimerbox { | ||
background-color: #eee; | ||
border: 1px solid #eeeeee; | ||
border-radius: 10px ; | ||
-moz-border-radius: 10px ; | ||
-webkit-border-radius: 10px ; | ||
padding: 20px; | ||
} | ||
|
||
video.header-vid { | ||
height: 140px; | ||
border: 1px solid black; | ||
border-radius: 10px ; | ||
-moz-border-radius: 10px ; | ||
-webkit-border-radius: 10px ; | ||
} | ||
|
||
img.header-img { | ||
height: 140px; | ||
border: 1px solid black; | ||
border-radius: 10px ; | ||
-moz-border-radius: 10px ; | ||
-webkit-border-radius: 10px ; | ||
} | ||
|
||
img.rounded { | ||
border: 1px solid #eeeeee; | ||
border-radius: 10px ; | ||
-moz-border-radius: 10px ; | ||
-webkit-border-radius: 10px ; | ||
} | ||
|
||
a:link,a:visited | ||
{ | ||
color: #1367a7; | ||
text-decoration: none; | ||
} | ||
a:hover { | ||
color: #208799; | ||
} | ||
|
||
td.dl-link { | ||
height: 160px; | ||
text-align: center; | ||
font-size: 22px; | ||
} | ||
|
||
.layered-paper-big { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */ | ||
box-shadow: | ||
0px 0px 1px 1px rgba(0,0,0,0.35), /* The top layer shadow */ | ||
5px 5px 0 0px #fff, /* The second layer */ | ||
5px 5px 1px 1px rgba(0,0,0,0.35), /* The second layer shadow */ | ||
10px 10px 0 0px #fff, /* The third layer */ | ||
10px 10px 1px 1px rgba(0,0,0,0.35), /* The third layer shadow */ | ||
15px 15px 0 0px #fff, /* The fourth layer */ | ||
15px 15px 1px 1px rgba(0,0,0,0.35), /* The fourth layer shadow */ | ||
20px 20px 0 0px #fff, /* The fifth layer */ | ||
20px 20px 1px 1px rgba(0,0,0,0.35), /* The fifth layer shadow */ | ||
25px 25px 0 0px #fff, /* The fifth layer */ | ||
25px 25px 1px 1px rgba(0,0,0,0.35); /* The fifth layer shadow */ | ||
margin-left: 10px; | ||
margin-right: 45px; | ||
} | ||
|
||
.paper-big { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */ | ||
box-shadow: | ||
0px 0px 1px 1px rgba(0,0,0,0.35); /* The top layer shadow */ | ||
|
||
margin-left: 10px; | ||
margin-right: 45px; | ||
} | ||
|
||
|
||
.layered-paper { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */ | ||
box-shadow: | ||
0px 0px 1px 1px rgba(0,0,0,0.35), /* The top layer shadow */ | ||
5px 5px 0 0px #fff, /* The second layer */ | ||
5px 5px 1px 1px rgba(0,0,0,0.35), /* The second layer shadow */ | ||
10px 10px 0 0px #fff, /* The third layer */ | ||
10px 10px 1px 1px rgba(0,0,0,0.35); /* The third layer shadow */ | ||
margin-top: 5px; | ||
margin-left: 10px; | ||
margin-right: 30px; | ||
margin-bottom: 5px; | ||
} | ||
|
||
.vert-cent { | ||
position: relative; | ||
top: 50%; | ||
transform: translateY(-50%); | ||
} | ||
|
||
hr | ||
{ | ||
border: 0; | ||
height: 1px; | ||
background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0)); | ||
} | ||
</style> | ||
|
||
<html> | ||
<head> | ||
<title>Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization</title> | ||
<meta property="og:image" content="./images/teaser.jpg"/> | ||
<meta property="og:title" content="Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization." /> | ||
<meta property="og:description" content="The first successful study for the ultra-high-resolution unpaired image-to-image translation with constant space complexity." /> | ||
|
||
<!-- Get from Google Analytics --> | ||
<!-- Global site tag (gtag.js) - Google Analytics --> | ||
<script async src=""></script> | ||
<!-- <script> | ||
window.dataLayer = window.dataLayer || []; | ||
function gtag(){dataLayer.push(arguments);} | ||
gtag('js', new Date()); | ||
gtag('config', 'UA-75863369-6'); | ||
</script> --> | ||
</head> | ||
|
||
<body> | ||
<br> | ||
<center> | ||
<span style="font-size:36px">Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization</span> | ||
<table align=center width=600px> | ||
<table align=center width=600px> | ||
<tr> | ||
<td align=center width=100px> | ||
<center> | ||
<span style="font-size:24px"><a href="https://kaminyou.com/">Ming-Yang Ho</a></span> | ||
</center> | ||
</td> | ||
<td align=center width=100px> | ||
<center> | ||
<span style="font-size:24px"><a href="https://github.com/st9007a">Che-Ming Wu</a></span> | ||
</center> | ||
</td> | ||
<td align=center width=100px> | ||
<center> | ||
<span style="font-size:24px"><a href="https://github.com/Min-Sheng">Min-Sheng Wu</a></span> | ||
</center> | ||
</td> | ||
<td align=center width=100px> | ||
<center> | ||
<span style="font-size:24px"><a href="https://www.csie.ntu.edu.tw/zh_tw/member/Faculty/%E6%9B%BE%E5%AE%87%E9%B3%B3-YF-Tseng-95281407">Yufeng Jane Tseng</a></span> | ||
</center> | ||
</td> | ||
</tr> | ||
</table> | ||
<table align=center width=250px> | ||
<tr> | ||
<td align=center width=120px> | ||
<center> | ||
<span style="font-size:24px"><a href='https://arxiv.org/abs/2407.04245'>[Paper]</a></span> | ||
</center> | ||
</td> | ||
<td align=center width=120px> | ||
<center> | ||
<span style="font-size:24px"><a href='https://github.com/Kaminyou/Dense-Normalization'>[GitHub]</a></span><br> | ||
</center> | ||
</td> | ||
</tr> | ||
</table> | ||
</table> | ||
</center> | ||
|
||
<center> | ||
<table align=center width=850px> | ||
<tr> | ||
<td width=260px> | ||
<center> | ||
<img class="round" style="width:800px" src="./images/teaser.jpg"/> | ||
</center> | ||
</td> | ||
</tr> | ||
</table> | ||
</center> | ||
|
||
<hr> | ||
|
||
<table align=center width=850px> | ||
<center><h1>Abstract</h1></center> | ||
<tr> | ||
<td> | ||
Recent advancements in ultra-high-resolution unpaired image-to-image translation have aimed to mitigate the constraints imposed by limited GPU memory through patch-wise inference. Nonetheless, existing methods often compromise between the reduction of noticeable tiling artifacts and the preservation of color and hue contrast, attributed to the reliance on global image- or patch-level statistics in the instance normalization layers. In this study, we introduce a Dense Normalization (DN) layer designed to estimate pixel-level statistical moments. This approach effectively diminishes tiling artifacts while concurrently preserving local color and hue contrasts. To address the computational demands of pixel-level estimation, we further propose an efficient interpolation algorithm. Moreover, we invent a parallelism strategy that enables the DN layer to operate in a single pass. Through extensive experiments, we demonstrate that our method surpasses all existing approaches in performance. Notably, our DN layer is hyperparameter-free and can be seamlessly integrated into most unpaired image-to-image translation frameworks without necessitating retraining. Overall, our work paves the way for future exploration in handling images of arbitrary resolutions within the realm of unpaired image-to-image translation. | ||
</td> | ||
</tr> | ||
</table> | ||
<br> | ||
|
||
<hr> | ||
<!-- <center><h1>Talk</h1></center> | ||
<p align="center"> | ||
<iframe width="660" height="395" src="https://www.youtube.com/embed/dQw4w9WgXcQ" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen align="center"></iframe> | ||
</p> | ||
<table align=center width=800px> | ||
<br> | ||
<tr> | ||
<center> | ||
<span style="font-size:28px"><a href=''>[Slides]</a> | ||
</span> | ||
</center> | ||
</tr> | ||
</table> | ||
<hr> --> | ||
|
||
<center><h1>Code</h1></center> | ||
|
||
<table align=center width=420px> | ||
<center> | ||
<tr> | ||
<td> | ||
</td> | ||
</tr> | ||
</center> | ||
</table> | ||
|
||
<table align=center width=800px> | ||
<tr> | ||
<td align=center width=800px> | ||
<center> | ||
<img class="round" style="width:800px" src="./images/framework.jpg"/> | ||
</center> | ||
</td> | ||
</tr> | ||
</table> | ||
<table align=center width=850px> | ||
<center> | ||
<tr> | ||
<td> | ||
The implementation of DN is fully provided in our official GitHub repository. To reproduce the experiments, please follow the steps described in the README.md file. | ||
</td> | ||
</tr> | ||
</center> | ||
</table> | ||
<table align=center width=800px> | ||
<br> | ||
<tr><center> | ||
<span style="font-size:28px"> <a href='https://github.com/Kaminyou/Dense-Normalization'>[GitHub]</a> | ||
</center> | ||
</span> | ||
</table> | ||
<br> | ||
<hr> | ||
<table align=center width=900px> | ||
<center><h1>Paper and Supplementary Material</h1></center> | ||
<tr> | ||
<td><a href="https://arxiv.org/abs/2407.04245"><img class="layered-paper-big" style="height:175px" src="./images/paper.png"/></a></td> | ||
<td><span style="font-size:14pt">Ming-Yang Ho, Che-Ming Wu, Min-Sheng Wu, and Yufeng Jane Tseng.<br> | ||
<b>Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization.</b><br> | ||
ECCV, 2024.<br> | ||
(hosted on <a href="https://arxiv.org/abs/2407.04245">ArXiv</a>)<br> | ||
<!-- (<a href="./resources/camera-ready.pdf">camera ready</a>)<br> --> | ||
<span style="font-size:4pt"><a href=""><br></a> | ||
</span> | ||
</td> | ||
</tr> | ||
</table> | ||
<br> | ||
|
||
<table align=center width=600px> | ||
<tr> | ||
<td><span style="font-size:14pt"><center> | ||
<a href="./images/bibtex.txt">[Bibtex]</a> | ||
</center></td> | ||
</tr> | ||
</table> | ||
|
||
<hr> | ||
<br> | ||
|
||
<table align=center width=900px> | ||
<tr> | ||
<td width=400px> | ||
<left> | ||
<center><h1>Acknowledgements</h1></center> | ||
This template was originally made by <a href="http://web.mit.edu/phillipi/">Phillip Isola</a> and <a href="http://richzhang.github.io/">Richard Zhang</a> for a <a href="http://richzhang.github.io/colorization/">colorful</a> ECCV project; the code can be found <a href="https://github.com/richzhang/webpage-template">here</a>. | ||
</left> | ||
</td> | ||
</tr> | ||
</table> | ||
|
||
<br> | ||
</body> | ||
</html> |