Skip to content

CatBench - Benchmark Framework for Machine Learning Interatomic Potentials in Adsorption Energy Predictions

License

Notifications You must be signed in to change notification settings

JinukMoon/CatBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CatBench

CatBench: Benchmark Framework for Machine Learning Interatomic Potentials in Adsorption Energy Predictions

Installation

pip install catbench

Overview

CatBench Schematic CatBench is a comprehensive benchmarking framework designed to evaluate Machine Learning Interatomic Potentials (MLIPs) for adsorption energy predictions. It provides tools for data processing, model evaluation, and result analysis.

Usage Workflow

1. Data Processing

CatBench supports two types of data sources:

A. Direct from Catalysis-Hub

# Import the catbench package
import catbench

# Process data from Catalysis-Hub
# Single tag
catbench.cathub_preprocess("Catalysis-Hub_Dataset_tag")

# Multiple tags
catbench.cathub_preprocess(["Catalysis-Hub_Dataset_tag1", "Catalysis-Hub_Dataset_tag2"])

Example:

# Single tag example
catbench.cathub_preprocess("AraComputational2022")

# Multiple tags example
catbench.cathub_preprocess(["AraComputational2022", "AlonsoStrain2023"])

When combining multiple benchmarks, the same adsorbate species might be recognized differently due to variations in naming conventions across different datasets (e.g., *HO vs *OH for hydroxyl group). To address this issue, you can use the adsorbate_integration parameter to unify these different naming conventions. If no integration is needed, you can simply use the benchmark_name parameter alone:

# When no integration is needed, just use benchmark_name
catbench.cathub_preprocess(["Catalysis-Hub_Dataset_tag1", "Catalysis-Hub_Dataset_tag2"])

# When integration is needed
catbench.cathub_preprocess(
    ["Catalysis-Hub_Dataset_tag1", "Catalysis-Hub_Dataset_tag2"],
    adsorbate_integration={'HO': 'OH'}
)

# You can add multiple integration pairs
catbench.cathub_preprocess(
    ["Catalysis-Hub_Dataset_tag1", "Catalysis-Hub_Dataset_tag2"],
    adsorbate_integration={
        'HO': 'OH',
        'O2H': 'OOH',
        'CO2H': 'COOH'
    }
)

B. User Dataset

For custom datasets, prepare your data structure as follows:

The data structure should include:

  • Gas references (gas/) containing VASP output files for gas phase molecules
  • Surface structures (surface1/, surface2/, etc.) containing:
    • Clean slab calculations (slab/)
    • Adsorbate-surface systems (H/, OH/, etc.)

Note: Each directory must contain CONTCAR and OSZICAR files. Other VASP output files can be present as well - the process_output function will automatically clean up (delete) all files except CONTCAR and OSZICAR.

data/
├── gas/
│   ├── H2gas/
│   │   ├── CONTCAR
│   │   └── OSZICAR
│   └── H2Ogas/
│       ├── CONTCAR
│       └── OSZICAR
├── surface1/
│   ├── slab/
│   │   ├── CONTCAR
│   │   └── OSZICAR
│   ├── H/
│   │   ├── 1/
│   │   │   ├── CONTCAR
│   │   │   └── OSZICAR
│   │   └── 2/
│   │       ├── CONTCAR
│   │       └── OSZICAR
│   └── OH/
│       ├── 1/
│       │   ├── CONTCAR
│       │   └── OSZICAR
│       └── 2/
│           ├── CONTCAR
│           └── OSZICAR
└── surface2/
    ├── slab/
    │   ├── CONTCAR
    │   └── OSZICAR
    ├── H/
    │   ├── 1/
    │   │   ├── CONTCAR
    │   │   └── OSZICAR
    │   └── 2/
    │       ├── CONTCAR
    │       └── OSZICAR
    └── OH/
        ├── 1/
        │   ├── CONTCAR
        │   └── OSZICAR
        └── 2/
            ├── CONTCAR
            └── OSZICAR

Then process using:

import catbench

# Define coefficients for calculating adsorption energies
# For each adsorbate, specify coefficients based on the reaction equation:
# Example for H*: 
#   E_ads(H*) = E(H*) - E(slab) - 1/2 E(H2_gas)
# Example for OH*:
#   E_ads(OH*) = E(OH*) - E(slab) + 1/2 E(H2_gas) - E(H2O_gas)

coeff_setting = {
    "H": {
        "slab": -1,      # Coefficient for clean surface
        "adslab": 1,     # Coefficient for adsorbate-surface system
        "H2gas": -1/2,   # Coefficient for H2 gas reference
    },
    "OH": {
        "slab": -1,      # Coefficient for clean surface
        "adslab": 1,     # Coefficient for adsorbate-surface system
        "H2gas": +1/2,   # Coefficient for H2 gas reference
        "H2Ogas": -1,    # Coefficient for H2O gas reference
    },
}

# This will clean up directories and keep only CONTCAR and OSZICAR files
catbench.process_output("data", coeff_setting)
catbench.userdata_preprocess("data")

2. Execute Benchmark

A. General Benchmark

This is a general benchmark setup. The range() value determines the number of repetitions for reproducibility testing. If reproducibility testing is not needed, it can be set to 1.

Note: This benchmark is only compatible with MLIP models that output total system energy. For example, OC20 MLIP models that are trained to directly predict adsorption energies cannot be used with this framework.

import catbench
from your_calculator import Calculator

# Prepare calculator list
# range(5): Run 5 times for reproducibility testing
# range(1): Single run when reproducibility testing is not needed
calculators = [Calculator() for _ in range(5)]

config = {}
catbench.execute_benchmark(calculators, **config)

After execution, the following files and directories will be created:

  1. A result directory is created to store all calculation outputs.
  2. Inside the result directory, subdirectories are created for each MLIP.
  3. Each MLIP's subdirectory contains:
    • gases/: Gas reference molecules for adsorption energy calculations
    • log/: Slab and adslab calculation logs
    • traj/: Slab and adslab trajectory files
    • {MLIP_name}_gases.json: Gas molecules energies
    • {MLIP_name}_anomaly_detection.json: Anomaly detection status for each adsorption data
    • {MLIP_name}_result.json: Raw data (energies, calculation times, anomaly detection, slab displacements, etc.)

B. OC20 MLIP Benchmark

Since OC20 project MLIP models are trained to predict adsorption energies directly rather than total energies, they are handled with a separate function.

import catbench
from your_calculator import Calculator

# Prepare calculator list
# range(5): Run 5 times for reproducibility testing
# range(1): Single run when reproducibility testing is not needed
calculators = [Calculator() for _ in range(5)]

config = {}
catbench.execute_benchmark_OC20(calculators, **config)

The overall usage is similar to the general benchmark, but each MLIP will only have the following subdirectories:

  • log/: Slab and adslab calculation logs
  • traj/: Slab and adslab trajectory files
  • {MLIP_name}_anomaly_detection.json: Anomaly detection status for each adsorption data
  • {MLIP_name}_result.json: Raw data (energies, calculation times, anomaly detection, slab displacements, etc.)

C. Single-point Calculation Benchmark

import catbench
from your_calculator import Calculator

calculator = Calculator()

config = {}
catbench.execute_benchmark_single(calculator, **config)

3. Analysis

import catbench

config = {}
catbench.analysis_MLIPs(**config)

The analysis function processes the calculation data stored in the result directory and generates:

  1. A plot/ directory:

    • Parity plots for each MLIP model
    • Combined parity plots for comparison
    • Performance visualization plots
  2. An Excel file {dataset_name}_Benchmarking_Analysis.xlsx:

    • Comprehensive performance metrics for all MLIP models
    • Statistical analysis of predictions
    • Model-specific details and parameters

Single-point Calculation Analysis

import catbench

config = {}
catbench.analysis_MLIPs_single(**config)

Outputs

1. Adsorption Energy Parity Plot (mono_version & multi_version)

You can plot adsorption energy parity plots for each adsorbate across all MLIPs, either simply or by adsorbate.

2. Comprehensive Performance Table

View various metrics for all MLIPs. Comparison Table

3. Anomaly Analysis

See how anomalies are detected for all MLIPs. Comparison Table

4. Analysis by Adsorbate

Observe how each MLIP predicts for each adsorbate. Comparison Table

Configuration Options

execute_benchmark / execute_benchmark_OC20

Option Description Default
MLIP_name Name of your MLIP Required
benchmark Name of benchmark dataset. Use "multiple_tag" for combined datasets, or specific tag name for single dataset Required
F_CRIT_RELAX Force convergence criterion 0.05
N_CRIT_RELAX Maximum number of steps 999
rate Fix ratio for surface atoms (0: use original constraints, >0: fix atoms from bottom up to specified ratio) 0.5
disp_thrs_slab Displacement threshold for slab 1.0
disp_thrs_ads Displacement threshold for adsorbate 1.5
again_seed Seed variation threshold 0.2
damping Damping factor for optimization 1.0
gas_distance Cell size for gas molecules 10
optimizer Optimization algorithm "LBFGS"

execute_benchmark_single

Option Description Default
MLIP_name Name of your MLIP Required
benchmark Name of benchmark dataset. Use "multiple_tag" for combined datasets, or specific tag name for single dataset Required
gas_distance Cell size for gas molecules 10
optimizer Optimization algorithm for gas molecule relaxation "LBFGS"

analysis_MLIPs

Option Description Default
Benchmarking_name Name for output files Current directory name
calculating_path Path to result directory "./result"
MLIP_list List of MLIPs to analyze All MLIPs in result directory
target_adsorbates Target adsorbates to analyze All adsorbates
specific_color Color for plots "black"
min Axis minimum Auto-calculated
max Axis maximum Auto-calculated
figsize Figure size (9, 8)
mark_size Marker size 100
linewidths Line width 1.5
dpi Plot resolution 300
legend_off Toggle legend False
error_bar_display Toggle error bars False
font_setting Font setting
(Eg: ["/Users/user/Library/Fonts/Helvetica.ttf", "sans-serif"])
False

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

This work will be published soon.

About

CatBench - Benchmark Framework for Machine Learning Interatomic Potentials in Adsorption Energy Predictions

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages