Skip to content

JianYang-Lab/MeDuSAJ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MeDuSAJ

MeDuSAJ supports cell-state deconvolution for annotated cell states (cell types). MeDuSAJ is more robust for estimating cell state (cell type) abundance for rare cells, albeit with a slightly increased computational burden.

Installation

in shell command:

git clone https://github.com/LeonSong1995/MeDuSAJ.git
cd MeDuSAJ
R CMD install `pwd`

in R:

install.packages('YourPath/MeDuSAJ',type='source',repos=NULL)

How to use

## Load the example data
example.sce = MeDuSAJ::example.sce
example.bulk = MeDuSAJ::example.bulk

## Estimate cell state (type) abundance
## You can bin your continuous cell trajectory into an uneven discrete cell state. 
### required annotation:
example.sce$cellLabel # your label of cell types or cell states for each cell.
example.sce$sampleID # sample Id for each cell.


## Find marker genes
Idents(example.sce) = example.sce$cellLabel
### You can use the FindAllMarkers functions in Seurat to find marker genes for each cell state (cell type). 
mk = FindAllMarkers(example.sce,only.pos = T,verbose = T,min.pct = 0.1) 
mk$cluster = as.vector(mk$cluster)

mk_gene = sapply(unique(mk$cluster), function(clu){
  mk_temp = mk[mk$cluster==clu,]
  mk_temp[mk_temp$p_val_adj < 0.05,'gene'][1:50]  
})
mk_gene = unique(c(mk_gene))


### Run MeDuSAJ
ct.es = CTdcv(bulk = example.bulk,ncpu = 2,sce = example.sce,data_type = 'count',gene = mk_gene)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published