This repo contains the code for the paper "Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs".
- [2025.02.21] The paper of MHA2MLA is publicly available: https://arxiv.org/abs/2502.14837
- [2025.02.19] Released the first version of the MHA2MLA code, providing usage code for Llama fine-tuning and evaluating.
-
Provide the code for incorporating the projection matrix and inference. - Thanks to DeepSeek for open-sourcing the FlashMLA inference framework. It’s theoretically possible to save more GPU memory usage using this framework. Let’s see how economical MHA2MLA + FlashMLA (+ KV quanto) can be!
-
Llama-2-7b-hf: https://huggingface.co/meta-llama/Llama-2-7b-hf
We use framework nanotron to train the model and transformers to eval the model, so it is necessary to convert the model to the required format.
For models with the original structure, the following command can be used for model conversion.
# hf2nanotron
torchrun --nproc_per_node=1 \
-m src.original_conversation.convert_hf_to_nanotron \
--checkpoint_path meta-llama/Llama-2-7b-hf \
--save_path meta-llama/Llama-2-7b-nt
# nanotron2hf
torchrun --nproc_per_node=1 \
-m src.original_conversation.convert_nanotron_to_hf \
--checkpoint_path meta-llama/Llama-2-7b-nt \
--tokenizer_path meta-llama/Llama-2-7b-hf \
--save_path meta-llama/Llama-2-7b
For MLA models, the following command can be used for model conversion.
# hf2nanotron
torchrun --nproc_per_node=1 \
-m src.conversation.convert_hf_to_nanotron \
--checkpoint_path meta-llama/Llama-2-7b-hf \
--save_path meta-llama/Llama-2-7b-nt \
--is_mla
# nanotron2hf
torchrun --nproc_per_node=1 \
-m src.conversation.convert_nanotron_to_hf \
--checkpoint_path meta-llama/Llama-2-7b-nt \
--tokenizer_path meta-llama/Llama-2-7b-hf \
--save_path meta-llama/Llama-2-7b \
--is_mla
First download the datasets.
-
smollm-corpus(fineweb-edu-dedup, cosmopedia-v2, python-edu): https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
-
open-web-math: https://huggingface.co/datasets/open-web-math/open-web-math
-
stackoverflow: https://huggingface.co/datasets/bigcode/stackoverflow-clean
Secondly, process the datasets according to https://github.com/huggingface/nanotron/blob/main/docs/nanoset.md.
Install pytorch and other packages.
conda create -n mla-ft python=3.11
pip install -r requirements.txt
Once the checkpoint in nanotron format is ready, you can use the following command for partial-RoPE fine-tuning (FT). The config file can refer to general configuration and the partial-RoPE configuration.
torchrun --nproc_per_node 2 \
-m src.run_train \
--config-file configs/rope/v5_last8_cfg.yaml \
--rope-cfg configs/rope/v5_last8_rope.yaml
If you want to use the partial-RoPE version 4, you should get the
qk_tensor
first. Using the following command, you can get theqk_tensor
:torchrun --nproc_per_node 1 \ src/test/test_2_norm.py \ --config-file configs/test/1B_2norm.yaml --output-dir utils/ \ --sample-size 1024
Partial-RoPE version | Strategy |
---|---|
0 | full-RoPE |
1 | |
2 | |
3 | |
4 | |
5 |
Use the following command for MLA fine-tuning:
torchrun --nproc_per_node 2 \
-m src.mla_train_nt \
--config-file configs/rope/v5_last8_cfg.yaml \
--rope-cfg configs/rope/v5_last8_rope.yaml
SVD version | Strategy |
---|---|
2 | |
7 |
For the partial-RoPE model, use the following command:
export model_name_or_path=""
export output_dir=""
export NUM_GPUS=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
accelerate launch --multi_gpu --num_processes=${NUM_GPUS} \
-m lighteval accelerate \
--model_args "pretrained=${model_name_or_path},revision=main,dtype=bfloat16,max_length=2048" \
--override_batch_size 50 \
--custom_tasks "src/evaluation/tasks.py" \
--tasks "src/evaluation/smollm1_base_v2.txt" \
--output_dir "eval_results/${output_dir}"
For the MLA evaluation, you can use the following command:
export model_name_or_path=""
export output_dir=""
export NUM_GPUS=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
export cfg_RoPE="configs/rope/v5_last8_rope.yaml"
accelerate launch --num_processes=${NUM_GPUS} \
-m src.evaluation.eval_mla --cfg_RoPE ${cfg_RoPE} \
accelerate \
--model_args "pretrained=${model_name_or_path}_hf,revision=main,dtype=bfloat16,max_length=2048" \
--override_batch_size 200 \
--custom_tasks "src/evaluation/tasks.py" \
--tasks "src/evaluation/smollm1_base_v2.txt" \
--output_dir "eval_results/${output_dir}"
For the baseline evaluation, you can use the following command:
export model_name_or_path=""
export output_dir=""
export NUM_GPUS=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
export cfg_RoPE="configs/rope/v5_last8_rope.yaml"
torchrun --nproc_per_node=${NUM_GPUS} \
-m src.evaluation.longbench \
--model_path ${model_name_or_path} \
--tokenizer_path ${model_name_or_path} \
--longbench True \
--lb_max_tokens 2048 \
--lb_batch_size 16 \
--output_dir /longbench/bf16 \
--dtype "bfloat16"
For the MLA model, you should add the parameter --is_mla
to the command.
If you want to use the quantized KV cache, you can use the following command:
export model_name_or_path=""
export output_dir=""
export NUM_GPUS=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
torchrun --nproc_per_node=${NUM_GPUS} \
-m src.evaluation.longbench \
--model_path ${model_name_or_path} \
--tokenizer_path ${model_name_or_path} \
--longbench True \
--lb_max_tokens 2048 \
--lb_batch_size 16 \
--output_dir /longbench/${model_name_or_path}_hqq_int4 \
--dtype "bfloat16" \
--cache_implementation "quantized" \
--backend "HQQ" \
--nbits 4 \
--residual_length 128 \
@misc{ji2025economicalinferenceenablingdeepseeks,
title={Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs},
author={Tao Ji and Bin Guo and Yuanbin Wu and Qipeng Guo and Lixing Shen and Zhan Chen and Xipeng Qiu and Qi Zhang and Tao Gui},
year={2025},
eprint={2502.14837},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.14837},
}